首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自X射线在矿物学中广泛应用以来,很多造岩矿物的成份能够用X射线鉴定了。目前普遍使用的是衍射仪、大半径德拜相机或基尼叶相机,使用小半径相机的还很少。  相似文献   

2.
周帆  朱健  张鹏  袁松虎 《地球科学》2017,42(6):1039-1044
羟自由基(·OH)是自然环境中氧化活性最强的物种,对物质转化具有重要影响.前期研究发现地下水接触O2可产生·OH,其中Fe2+氧化起主导作用,但地下水化学组成对Fe2+氧化产生·OH的影响尚不清楚.通过室内模拟实验,探究了地下水中常见组分(Ca2+、Mg2+、腐殖酸(HA)和磷酸根)对Fe2+氧化产生·OH的影响.结果表明,pH 6.5时0.357 mM Fe2+在5 h内氧化完全,产生约1.8 μM的·OH;Ca2+(1~6 mM)、Mg2+(1~4 mM)对Fe2+氧化和·OH产生无明显影响;HA(10~30 mg/L)促进Fe2+氧化和·OH产生,促进效果随pH降低而增强;磷酸根(0.01~0.03 mM)抑制Fe2+氧化,对·OH产生的影响为先抑制后促进.   相似文献   

3.
零价铁(Fe0) 被广泛用于地下水中硝酸盐原位与异位修复,但二价铁(Fe2+) 的存在对具有氧化膜的Fe0还原硝酸盐的作用效应仍有待研究。以100 目的未经酸化的颗粒状零价铁作为还原剂,采用室内批试验方法,研究了Fe2+在零价铁还原去除NO3-系统中的作用效应。实验结果表明,Fe2+可显著提高Fe0对于NO3-的去除速率与去除效率,且Fe2+浓度越高,去除速率与效率越高;由于未经酸化的Fe0具有氧化膜,反应初期的NO3-还原速率较慢。Fe2+将零价铁表面的Fe2O3氧化膜转化为Fe3O4,加速电子由Fe0向NO3-的转移,促进NO3-还原。此外,在反应系统中加入Fe3O4,可进一步提高Fe0对于硝酸盐的去除能力,若Fe2+不存在,仅添加Fe3O4,NO3-的去除效率没有提高。  相似文献   

4.
Iron-rich clay minerals are abundant in the natural environment and are an important source of iron for microbial metabolism. The objective of this study was to understand the mechanism(s) of enhanced reduction of Fe(III) in iron-rich 2:1 clay minerals under sulfate-reducing conditions. In particular, biogenic reduction of structural Fe(III) in nontronite NAu-2, an Fe-rich smectite-group mineral, was studied using a Desulfovibrio spp. strain G-11 with or without amended sulfate. The microbial production of Fe(II) from NAu-2 is about 10% of total structural Fe(III) (30 mM) when Fe(III) is available as the sole electron acceptor. The measured production of Fe(II), however, can reach 29% of the total structural Fe(III) during sulfate reduction by G-11 when sulfate (50 mM) is concurrently added with NAu-2. In contrast, abiotic production of Fe(II) from the reaction of NAu-2 with Na2S (50 mM) is only ca. 7.5% of the total structural Fe(III). The enhanced reduction of structural Fe(III) by G-11, particularly in the presence of sulfate, is closely related to the growth rate and metabolic activities of the bacteria. Analyses by X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy reveal significant changes in the structure and composition of NAu-2 during its alteration by bacterial sulfate reduction. G-11 can also derive nutrients from NAu-2 to support its growth in the absence of amended minerals and vitamins. Results of this study suggest that sulfate-reducing bacteria may play a more significant role than previously recognized in the cycling of Fe, S, and other elements during alteration of Fe-rich 2:1 clay minerals and other silicate minerals.  相似文献   

5.
含钙铝铁水解聚合产物的矿物学研究Ⅰ:形态和物相   总被引:1,自引:3,他引:1  
用X射线粉晶衍射分析技术结合热重分析、红外光谱及电镜观察对合成的含钙聚合氯化铝铁(PAFCCa)及其合成前体含钙聚合氯化铝(PACCa)、含钙聚合氯化铁(PFCCa)的低温干燥样进行了表征.XRD衍射结果表明,Ca(Ⅱ) 分别与Al(Ⅲ)、Fe(Ⅲ)都能形成结晶化合物,在PACCa中结晶化合物主要是Ca3Al2(OH)12,在PFCCa中结晶化合物主要是Ca4Fe14O25,在PAFCCa中形成Al-Ca-Fe三相结晶化合物铁取代的氯钙矾石结构体,其组成是(Ca6(Al,Fe)2[(OH)4Cl2]3·20H2O).热重分析、红外光谱与电镜观察都支持了XRD的衍射结果.  相似文献   

6.
Oxidation of As(III) by natural manganese (hydr)oxides is an important geochemical reaction mediating the transformation of highly concentrated As(III) in the acidic environment such as acid mine drainage (AMD) and industrial As-contaminated wastewater, however, little is known regarding the presence of dissolved Fe(II) on the oxidation process. In this study, oxidation of As(III) in the absence and presence of Fe(II) by MnO2 under acidic conditions was investigated. Kinetic results showed that the presence of Fe(II) significantly inhibited the removal of As(III) (including oxidation and sorption) by MnO2 in As(III)-Fe(II) simultaneous oxidation system even at the molar ratio of Fe(II):As(III) = 1/64:1, and the inhibitory effects increased with the increasing ratios of Fe(II):As(III). Such an inhibition could be attributed to the formation of Fe(III) compounds covering the surface of MnO2 and thus preventing the oxidizing sites available to As(III). On the other hand, the produced Fe(III) compounds adsorbed more As(III) and the oxidized As(V) on the MnO2 surface with an increasing ratio of Fe(II):As(III) as demonstrated in kinetic and XPS results. TEM and EDX results confirmed the formation of Fe compounds around MnO2 particles or separated in solution in Fe(II) individual oxidation system, Fe(II) pre-treated and simultaneous oxidation processes, and schwertmannite was detected in Fe(II) individual and Fe pre-treated oxidation processes, while a new kind of mineral, probably amorphous FeOHAs or FeAsO4 particles were detected in Fe(II)-As(III) simultaneous oxidation process. This suggests that the mechanisms are different in Fe pre-treated and simultaneous oxidation processes. In the Fe pre-treated and MnO2-mediated oxidation pathway, As(III) diffused through a schwertmannite coating formed around MnO2 particles to be oxidized. The newly formed As(V) was adsorbed onto the schwertmannite coating until its sorption capacity was exceeded. Arsenic(V) then diffused out of the coating and was released into the bulk solution. The diffusion into the schwertmannite coating and the oxidation of As(III) and sorption of both As(V) and As(III) onto the coating contributed to the removal of total As from the solution phase. In the simultaneous oxidation pathway, the competitive oxidation of Fe(II) and As(III) on MnO2 occurred first, followed by the formation of FeOHAs or FeAsO4 around MnO2 particles, and these poorly crystalline particles of FeOHAs and FeAsO4 remained suspended in the bulk solution to adsorb As(III) and As(V). The present study reveals that the formation of Fe(III) compounds on mineral surfaces play an important role in the sorption and oxidation of As(III) by MnO2 under acidic conditions in natural environments, and the mechanisms involved in the oxidation of As(III) depend upon how Fe(II) is introduced into the As(III)-MnO2 system.  相似文献   

7.
We studied the local coordination and structure of Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water (buffered to pH 7 by 8 mM bicarbonate) using synchrotron-based X-ray absorption spectroscopy (XAS) at the K-edges of Fe, P, Ca, and As. Dissolved phosphate, silicate, and Ca at different ratios relative to each other and to Fe affect the forming Fe(III)-phases in a complex manner. The high affinity of phosphate for Fe(III) results in the predominant precipitation of Fe(III)-phosphate as long as dissolved phosphate is present, with Fe(III) polymerization limited to small oligomers. In Ca-containing solution, Ca uptake by Fe(III)-Ca-phosphate involves the linkage and coagulation of negatively charged Fe(III)-phosphate oligomers via Ca-O-P bonds. In the absence of phosphate, dissolved silicate at Si/Fe ratios above ∼0.5 results in the formation of hydrous ferric oxide (HFO) with mainly edge-sharing Fe-Fe linkage. At lower Si/Fe ratios of ∼0.5-0.1, mainly 2-line ferrihydrite (2L-Fh) with both edge- and corner-sharing Fe-Fe linkage forms. Only in the absence of phosphate at low Si/Fe ratio, lepidocrocite (Lp) forms. In solutions containing sufficient Fe(II), aeration results in the sequential precipitation of Fe(III)-(Ca-)phosphate, HFO or 2L-Fh (depending on solution Si/Fe), and finally Lp. The amount and oxidation state of As co-precipitated with Fe(III) are controlled by the co-oxidation of As(III) with Fe(II), which increases with initial Fe/As ratio, and the competitive uptake of phosphate, As(V) and less strongly sorbing silicate and As(III). This study demonstrates that the diversity and sequence of short-range-ordered Fe(III)-precipitates forming by Fe(II) oxidation in near-neutral natural waters depend on water chemistry. Because differences in the colloidal stability and biogeochemical reactivity of these phases will affect the fate of associated major and trace elements, the different Fe(III)-precipitates and their specific biogeochemical properties must be taken into account when addressing nutrient and contaminant dynamics at redox boundaries in natural and engineered systems.  相似文献   

8.
We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs.  相似文献   

9.
Preparation and Characterization of Hydroxyiron-Montmorillonite Complexes   总被引:1,自引:0,他引:1  
Iron elementin soil exists mainly in form s of Fe(OH) 2 ,Fe(OH ) 2 and Fe2 (OH ) 2 2 in tropical and subtropical areaswhere p H values are less than7.These hydroxy- Fe ions reactslowly with montmorillonite by intercalation into their inter-layer space and adsorption on their surfaces,and in this wayvarious hydroxyiron- montmorillonite complexes are formed(Cool and Vansant,1998;Wu et al.,1997;Molinared andClearfield,1994) . Hydroxyiron- montm orillonite complexesare assum ed to have…  相似文献   

10.
Analytical methods used for determining dissolved Fe(II) often yield inaccurate results in the presence of high Fe(III) concentrations. Accurate analysis of Fe(II) in solution when it is less than 1% of the total dissolved Fe concentration (FeT) is sometimes required in both geochemical and environmental studies. For example, such analysis is imperative for obtaining the ratio Fe(II)/Fe(III) in rocks, soils and sediments, for determining the kinetic constants of Fe(II) oxidation in chemical or biochemical systems operating at low pH, and is also important in environmental engineering projects, e.g. for proper control of the regeneration step (oxidation of Fe(II) into Fe(III)) applied in ferric-based gas desulphurization processes. In this work a method capable of yielding accurate Fe(II) concentrations at Fe(II) to FeT ratios as low as 0.05% is presented. The method is based on a pretreatment procedure designed to separate Fe(II) species from Fe(III) species in solution without changing the original Fe(II) concentration. Once separated, a modified phenanthroline method is used to determine the Fe(II) concentration, in the virtual absence of Fe(III) species. The pretreatment procedure consists of pH elevation to pH 4.2–4.65 using NaHCO3 under N2(g) environment, followed by filtration of the solid ferric oxides formed, and subsequent acidification of the Fe(II)-containing filtrate. Accuracy of Fe(II) analyses obtained for samples (Fe(II)/FeT ratios between 2% and 0.05%) to which the described pretreatment was applied was >95%. Elevating pH to above 4.65 during pretreatment was shown to result in a higher error in Fe(II) determination, likely resulting from adsorption of Fe(II) species and their removal from solution with the ferric oxide precipitate.  相似文献   

11.
本区的Mg-Fe云母是富镁黑云母及金云母,MF>1.35,[Mg/(Mg+Fe3++Fe2++Mn)]>0.65,[(Fe3++Fe2+)/(Fe3++Fe2++Mg)]<0.4,属于富镁、富碱、高硅、贫铁类型云母。根据Mg-Fe云母的成分及形成的物化条件,表明其寄生岩石属于富碱,浅成一超浅成的幔源岩石。  相似文献   

12.
Relations between the composition of Al-Fe(III)-epidotes and the Fe content and oxidation ratio of a series of metamorphic rocks from the Hohen Tauern area, Tyrol (Austria), were investigated. The Fe(III) content of the epidotes depends on the oxidation ratio Fe(III)×100/(Fe(III)+ Fe(II)) of the rocks. The Fe(III) content of the epidotes as well as the oxidation ratio decreases within the series from greenschist to almandin-amphibolite facies. The relation between epidote composition and oxidation ratio can be explained by the following redox reactions: 6 Fe(III) Al2 Ep+6 Mu+6 Qz+6 Hä+n Ab ? (1a) (12 An+n Ab) Plag+6 Bio+3 H2O+4 1/2O2. 6 Fe(III) Al2 Ep+6 Mu+6 Qz+n Ab ? (1b) (12 An+n Ab) Plag+2 Bio+4 Kf+7 H2O+1 1/2O2. These reactions are in good agreement with the observed mineral assemblages and may explain the increase of the An content of coexisting plagioclase with increasing metamorphic grade.  相似文献   

13.
利用2002年在崇明东滩采得的CDS、CDM和CDN三个典型区域沉积物剖面样品,测定了其中的有机碳、活性铁、总磷以及粒度等特征参数,分析了地球化学元素的分布变化特征并对其沉积环境的变化进行了探讨。结果表明崇明东滩沉积物中有机碳的含量较大(0.3%~1.07%),垂向分布上,表层/亚表层含量高且变化复杂,中下层有机碳含量逐渐变小。Fe3 在整个研究区域均是从表层向下逐渐递减的,Fe2 含量逐渐增加。从实验结果判断,所研究区域沉积环境上层以氧化环境为主,呈弱氧化型,中下层以还原环境为主。总磷含量呈现自上而下减少的变化,CDS表现为波浪形变化。分析发现潮滩沉积物各地球化学元素之间不仅相互作用,并且受到沉积物颗粒大小和水动力、物源输入、物理扰动等因素的影响。崇明东滩沉积物氧化还原界面与中、高潮滩划分界大致相当。  相似文献   

14.
Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (∼10−11 mol Fe(II) m−2 g−1), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III)aq and bacterially-generated Fe(II)aq concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area.  相似文献   

15.
亚铁离子(Fe2+)是地表油气化探工作中重要的评价指标。铁元素的变价特征可导致铁离子的不同存在形式,直接利用Fe2+值作为反映油气田上方还原柱性质的指标,存在一定的片面性。因此,提出用亚铁离子转化率K=Fe2+/Fe3++Fe2+的改进方法,并在实际勘查中验证,认为亚铁离子转化率可以为油气化探异常评价和靶区圈定提供更可靠的信息。  相似文献   

16.
A quantitative study was performed to understand how Fe(III) site occupancy controls Fe(III) bioreduction in nontronite by Shewanella putrefaciens CN32. NAu-1 and NAu-2 were nontronites and contained Fe(III) in different structural sites with 16 and 23% total iron (w/w), respectively, with almost all iron as Fe(III). Mössbauer spectroscopy showed that Fe(III) was present in the octahedral site in NAu-1 (with a small amount of goethite), but in both the tetrahedral and the octahedral sites in NAu-2. Mössbauer data further showed that the octahedral Fe(III) in NAu-2 existed in at least two environments- trans (M1) and cis (M2) sites. The microbial Fe(III) reduction in NAu-1 and NAu-2 was studied in batch cultures at a nontronite concentration of 5 mg/mL in bicarbonate buffer with lactate as the electron donor. The unreduced and bioreduced nontronites were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy, and transmission electron microscopy (TEM). In the presence of an electron shuttle, anthraquinone-2,6-disulfonate (AQDS), the extent of bioreduction was 11%-16% for NAu-1 but 28%-32% for NAu-2. The extent of reduction in the absence of AQDS was only 5%-7% for NAu-1 but 14%-18% for NAu-2. The control experiments with heat killed cells and without cells did not show any appreciable reduction (<2%). The extent of reduction in experiments performed with a dialysis membrane to separate cells from clays (without AQDS) was 2%-3% for NAu-1 but 5%-7% for NAu-2, suggesting that cells probably released an electron shuttling compound and/or Fe(III) chelator. The reduction rate was also faster in NAu-2 than that in NAu-1. Mössbauer data of the bioreduced nontronite materials indicated that the Fe(III) reduction in NAu-1 was mostly from the presence of goethite, whereas the reduction in NAu-2 was due to the presence of the tetrahedral and trans-octahedral Fe(III) in the structure. The measured aqueous Fe(II) was negligible. As a result of bioreduction, the average nontronite particle thickness remained nearly the same (from 2.1 to 2.5 nm) for NAu-1, but decreased significantly from 6 to 3.5 nm for NAu-2 with a concomitant change in crystal size distribution. The decrease in crystal size suggests reductive dissolution of nontronite NAu-2, which was supported by aqueous solution chemistry (i.e., aqueous Si). These data suggest that the more extensive Fe(III) bioreduction in NAu-2 was due to the presence of the tetrahedral and the trans-octahedral Fe(III), which was presumed to be more reducible. The biogenic Fe(II) was not associated with biogenic solids or in the aqueous solution. We infer that it may be either adsorbed onto surfaces of nontronite particles/bacteria or in the structure of nontronite. Furthermore, we have demonstrated that natural nontronite clays were capable of supporting cell growth even in medium without added nutrients, possibly due to presence of naturally existing nutrients in the nontronite clays. These results suggest that crystal chemical environment of Fe(III) is an important determinant in controlling the rate and extent of microbial reduction of Fe(III) in nontronite.  相似文献   

17.
丁阳  薛纪越 《地质论评》1997,43(4):415-419
新近在我国山西省娄烦县尖山铁矿的角闪片岩中发现一种取向连生的镁铁质闪石与钙质闪石共存对。电子探针分析确定它们分别为铁闪石K0.001(Na0.027Ca0.073Mn0.031Fe^2+1.801)1.932(Fe^2+2.948Mg1.964Ti0.002Al0.087)5Si8.069O22.10(OH)2与铁韭闪石(K0.135Na0.461)0.596(Na0.088Ca1.853Mn0.  相似文献   

18.
本文对旅大地区金伯利岩中三个世代铬尖晶石进行了穆斯堡尔谱研究,结果表明晚期结晶的第三世代铬尖晶石不仅Fe~(3+)含量高,且有部分反尖晶石型结构特征,即Fe~(3+)可同时存在于八面体和四面体结构位置中,并确定了它们的穆谱参数,通过对金伯利岩中三个世代铬尖晶石穆谱研究发现穆谱参数同成份,结晶条件具有一定的内在联系.  相似文献   

19.
The electron spin resonance (ESR) spectra and the natural and gamma-induced thermoluminescence (TL) glow curves of a series of variably cation-exchanged Fe-Ca-clays prepared from SWy-1 montmorillonite were examined. The ESR signal (g = 2) intensity associated with the surface Fe was found to increase linearly with surface Fe content up to a nominal concentration of 50% exchangeable Fe. At > 50% exchangeable Fe, no appreciable increase in the signal was noted. The TL intensity decreased linearly with increasing surface Fe up to 50% nominal exchangeable Fe. At > 50%, the signal was not appreciably further diminished. The natural TL showed only a high-temperature peak, but irradiation produced an additional low-temperature peak. One month after gamma-irradiation, the integrated TL signal was still 10-100 times higher than that from the non-irradiated material. Thus, (1) surface iron clusters may form above a certain critical Fe concentration; (2) the Fe clusters are probably less effective in quenching TL than are single Fe atoms, implying interaction between surface Fe and the stored energy content of the material; and (3) the electronic energy stored in the material as the result of gamma-irradiation is only slowly dissipated.  相似文献   

20.
长江口氧化还原敏感元素的早期成岩过程   总被引:2,自引:0,他引:2  
通过测试长江口沉积物及间隙水中Fe、Mn、U及Mo的含量,结合早期成岩模型及地球化学热力学分析,探讨了在河口环境中影响间隙水氧化还原敏感元素(Fe、Mn、U及Mo)分布的主要因素.根据Fick第一定律,估算了Fe、Mn、U及Mo在沉积物-水界面的扩散通量.结果表明,间隙水Fe、Mn、U及Mo的含量分别介于0.8~106μmol/L、14.8~258μmol/L、1.9~14.4nmol/L及60~546nmol/L之间.在垂直剖面上,间隙水Fe、Mn峰值分别出现在约5cm或10cm的深度.早期成岩过程是影响长江口沉积物间隙水Fe、Mn分布的主要因素.吸附系数对间隙水Fe、Mn的分布也有重要的影响.吸附系数越高,间隙水Fe、Mn浓度越低.影响间隙水U分布的主要因素为Fe,而Mo与Fe、Mn之间不存在相关性.通量计算结果显示Fe、Mn、U及Mo的扩散通量分别介于3.0~10.5μmol·(m2·d)-1、35.7~439.5μmol·(m2·d)-1、-2.3~0.2nmol·(m2·d)-1及-36.0~94.6nmol·(m2·d)-1之间.沉积物中自生铀组分约占总铀的6%~67%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号