共查询到20条相似文献,搜索用时 0 毫秒
1.
The Bajo Segura Basin is located in the eastern Betic Cordillera, at present connected with the Mediterranean Sea to the east. It has a complete stratigraphic record from the Tortonian to the Quaternary, which has been separated into six units bounded by unconformities. This paper is concerned with the northern edge of the basin, controlled by a major strike–slip fault (the Crevillente Fault Zone, CFZ), where the most complete stratigraphic successions are found. The results obtained (summarised below) are based on an integrated analysis of the sedimentary evolution and the subsidence-uplift movements. Unit I (Early Tortonian) is transgressive on the basin basement and is represented by ramp-type platform facies, organised in a shallowing-upward sequence related to tectonic uplift during the first stages of movement along the CFZ. Unit II (lower Late Tortonian) consists of shallow platform facies at bottom and pelagic basin facies at top, forming a deepening-upward sequence associated with tectonic subsidence due to sinistral motion along the CFZ. Unit III (middle Late Tortonian) is made up of exotic turbiditic facies related to a stage of uplift and erosion of the southern edge of the basin. Unit IV (upper Late Tortonian) consists of pelagic basin facies at bottom and shallow platform facies at top, defining a shallowing-upward sequence related to tectonic uplift during continued sinistral movement on the basin-bounding fault. Units V (latest Tortonian–Messinian) and VI (Pliocene–Pleistocene p.p.) consist of shallowing-upward sequences deposited during folding and uplift of the northern margin of the basin. No definitive evidence of any major eustatic sea-level fall, associated with the ‘Messinian salinity crisis’, has been recorded in the stratigraphic sections studied. 相似文献
2.
A palaeomagnetic study of the Ronda peridotites (southern Spain) has been carried out on 301 samples from 20 sites, spread along the three main outcrops of the ultrabasic complex: Ronda, Ojén and Carratraca massifs. Different lithologies and outcrops with different degrees of serpentinization have been sampled and analysed. Rock magnetic experiments have been carried out on a representative set of samples. These measurements include: Curie curves, hysteresis cycles, isothermal remanent magnetization (IRM) acquisition curves, thermal demagnetization of IRM imparted along three orthogonal axes and magnetic bulk susceptibility. Results indicate that magnetite is the main magnetic mineral present in the samples. Stepwise thermal and alternating field (AF) demagnetization of the natural remanent magnetization (NRM) reveals the presence of a characteristic remanent magnetization (ChRM) carried by magnetite, and in some sepentinized samples, a northward component with variable unblocking temperatures up to 250–575 °C. The appearance and the relative intensity of this northward component are strongly related to serpentinization degree. Taking into account the geological history of the peridotites, the ChRM has been considered as a thermo-chemical remanent magnetization acquired during the first serpentinization phase associated to the post-metamorphic cooling of this unit. On the basis of radiometric and fission track analysis, the ChRM is proposed to have been acquired between 20 and 17–18 Ma. The inclination of the mean direction of the ChRM statistically coincides with the expected inclination for stable Iberia during the Oligocene–Miocene. The declination of the ChRM differs from the expected declination, indicating clockwise block rotations of 41±12° about vertical axes since the cooling of the peridotites. When applying a compositional layering correction, the ChRM directions fail to pass this kind of fold test, thus, the compositional layering was not a palaeohorizontal during ChRM acquisition time. Normal and reversed polarities of the ChRM are reported, showing that at least one reversal of the Earth's magnetic field took place during ChRM acquisition process. A tentative polarity zonation within the peridotitic outcrops is also suggested. No evidence is found from these data for the previously proposed simultaneity between post-metamorphic cooling and rotation of the peridotites. 相似文献
3.
4.
Manuel Martín-Martín Francesco Guerrera Tomás Rodríguez-Estrella Francisco Serrano Francisco J. Alcalá Giuliana Raffaelli 《Geodinamica Acta》2018,30(1):265-286
An interdisciplinary study of Miocene successions in the eastern External Betic Zone (South Iberian Margin) was carried out. Evidences of syn-sedimentary tectonic activity were recognized. The results enabled a better reconstruction of the stratigraphic architecture (with an improved chronostratigraphic resolution) in the framework of the Miocene foredeep evolution of the eastern EBZ. Two main depositional sequences were dated as uppermost Burdigalian-upper Serravallian p.p. and middle-upper Tortonian. p.p., respectively. The vertical and lateral diversification of lithofacies associations and thicknesses resulted from the syn-depositional tectonic complexity of the area. A great variety of sedimentary depositional realms is due to different subsidence rates, and the growing of anticlines and synclines during the Langhian p.p.-Serravallian. After a regression with an early Tortonian erosional gap, platform to hemipelagic realms developed during the middle Tortonian. The end of the sedimentation coincided with the emplacement of an important olisthostrome-like mass consisting of Triassic material related to either the development of thrust systems or diapirs emerged in the middle-late Tortonian, during the nappe emplacement. Correlations with other external sectors of the Betic Chain, and the external domains of the Rif, Tell, and northern Apennine Chains highlighted a similar Miocene foredeep evolution during the building of these orogens. 相似文献
5.
P. A. RUIZ-ORTIZ 《Sedimentology》1983,30(1):33-48
ABSTRACT The middle member of the Loma del Toril formation (Kimmeridgian-Lower Tithonian, Intermediate units, Betic Cordillera) consists of up to 250 m of resedimented carbonate material. Three units have been distinguished. The lower, Unit A, is composed of conglomerates that are interpreted as deposited in a major valley on the lower slope of a basin margin. Unit B, calcarenites with some conglomerate intercalation, is interpreted as distributary channel deposits and Unit C, calcarenites, as the result of poorly developed depositional lobes of a submarine fan. The three units form a recessional sequence. They cannot be related to a transgression because the Kimmeridgian-Lower Tithonian in the Prebetic zone, where epicontinental sediments exist, is clearly regressive. The upper member of the Loma del Toril formation, made up of pelagic limestones with sporadic calcarenites or even thin conglomerate intercalations, is best interpreted as a basin plain facies. Lateral facies relationships suggest that down-faulting of the basin floor controlled the development of the fan. The scarce occurrence of turbidite beds in the basin plain facies, the prevailing channelized facies and the obvious lack of overbank deposits, suggest a transport system of low efficiency, with fan deposition at the base of slope. The underlying Jurassic strata cropping out along fault scarps, coeval carbonate shelf material, and upper slope deposits were the main sources of turbiditic resediments. With respect to basin morphology sedimentary processes and fan geometry, this Jurassic turbidite basin can be compared with the modern California continental borderland. Ancient analogues have been described by Reinhart (1977) and Price (1977). 相似文献
6.
We investigate the stress regimes acting during serpentinization and faulting of the largest known subcontinental lithospheric peridotite body, namely the Ronda peridotites (Betic Cordillera, S. Spain). Petrological and structural analyses on serpentinites grown along fault planes crosscutting the peridotite slab, reveal that they were developed during three superposed stress tensors: the oldest one (E1) is characterized by NW–SE sub-horizontal compression; the intermediate one consists in NE–SW to ENE–WSW extension with orthogonal compression (E2); and the youngest one (E3) shows a sub-vertical maximum stress axis and NW–SE sub-horizontal extension. During serpentinization, maximum and minimum stress axes flip between a NW–SE horizontal position and a vertical one in the whole peridotite body (E1 and E3), while E2 represents an intermediate stress stage. Field relationships and previous petrological and geochronological data indicate that serpentinization and associated stress tensors are coeval with intrusive leucogranite dikes crosscutting the peridotites, thus constraining these processes to 19–22 Ma and occurring at upper continental crust depths (P < 4 kbar). Gravity data reveal that the average density of the Ronda mantle slab (~ 2.7–2.8 g/cm3) shows a negligible contrast with the surrounding crustal rocks, thus suggesting that the peridotite body is serpentinized in a great proportion. Our preferred tectonic model to account for the evolution of the Ronda peridotites in the upper crust considers that E1 compression was linked to the collision of the Alborán continental domain with the Iberian passive margin during the Gibraltar Arc formation. Subsequently, the sudden onset of extension recorded within the peridotite slab (E2 and E3) was favored by serpentinization-driven buoyancy. 相似文献
7.
Devonian sediments of the Malaguide Complex potentially could include the Frasnian–Famennian boundary, one of the five greatest Phanerozoic biotic crises. Conodont biofacies and microfacies of carbonate clasts from a pebbly mudstone underlying Tournaisian radiolarites allows identification, for the first time in the Malaguide Complex, of Devonian shallow marine environments laterally grading to deeper realms. The clasts yielded Frasnian conodont associations of the falsiovalis to rhenana biozones, with six biofacies that reveal different environmental conditions in their source areas. Source sediments were dismantled and redeposited within the pebbly mudstone, whose origin is tentatively related to one of the events that are associated worldwide with the Frasnian–Famennian crisis. The latter is recorded, in two equivalent Malaguide pelagic successions, by stratigraphic discontinuities, and it was, probably, tectonically and/or eustatically controlled, as in other Alpine‐Mediterranean Paleotethyan margins. 相似文献
8.
Pegmatite dikes bearing andalusite crosscut foliation S2 in Alpujarride gneisses and schists. Post‐S2 andalusite is transposed by a foliation S3, defined by fibrolite, which affects the dikes. The dikes represent highly differentiated granitic magmas with low REE and Zr contents and a positive Eu anomaly. U‐Pb SHRIMP dating of magmatic zircons provided Pan‐African ages (cores) and late Variscan ages (rims). However, U‐rich rims also provided metamorphic Alpine ages, supporting a polyorogenic tectonometamorphic history for pre‐Mesozoic Alpujarride rocks. 相似文献
9.
Sila Pla-Pueyo Elizabeth H. Gierlowski-Kordesch Csar Viseras Jesús M. Soria 《Sedimentary Geology》2009,219(1-4):97-114
Sequence stratigraphy, based on climatic, tectonic, and base level parameters, can be used to understand carbonate sedimentation in continental basins. The uppermost continental fill of the Guadix Basin (Betic Cordillera), containing both siliciclastics and carbonates, is investigated here. In its central sector a thick succession of fluvio-lacustrine sediments appear, hosting several important Pliocene and Pleistocene macrovertebrate sites (Fonelas Project). The need to characterize the stratigraphic and sedimentologic context of these important paleontologic sites has lead to litho-, magneto- and biostratigraphic studies. These data, together with the sedimentologic analysis of the Pliocene and Pleistocene siliciclastic and carbonate successions, establish a sedimentary model for the fluvio-lacustrine sedimentation of the two last stages of sedimentation in the Guadix Basin (Units V and VI). Unit V comprises mostly fluvial siliciclastic sediments with less abundant carbonate beds interpreted as floodplain lakes or ponds. The latter, Unit VI, is dominated by vertically-stacked, carbonate palustrine successions. Using two pre-existent continental stratigraphic models, the influence of climate, tectonism, and stratigraphic base level during the last 3.5 Ma on the sedimentary evolution of the fluvio-lacustrine system in the Guadix Basin, especially the carbonate sedimentation patterns, is outlined. 相似文献
10.
L.F. Sarmiento-Rojas J.D. Van Wess S. Cloetingh 《Journal of South American Earth Sciences》2006,21(4):383
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted. 相似文献
11.
J. D. Jiménez-Perálvarez R. El Hamdouni J. A. Palenzuela C. Irigaray J. Chacón 《Landslides》2017,14(6):1975-1991
Landslide hazard in a region limited to data from a regional scale about triggering factors is assessed via cross tabulation between determining factors and landslides with recent activity. Firstly, landslide susceptibility was evaluated and validated through a bivariate statistical method between the previously identified stability conditioning factors and the mapped landslides. In this way, the most susceptible areas for assessing landslide hazards were selected. The main problem to solve in this type of research is the landslide activity. For this purpose, several techniques were applied: news reports, differential interferometric synthetic aperture radar, digital photogrammetry, light detection and ranging, photointerpretation, and dendrochronology. Both the strong and weak points of these techniques are also mentioned. The landslide return period was computed via the association between landslide activity and triggering factors, in this case annual rainfall. Finally, landslide hazard was mapped solely based on landslides with recent activity and their computed return period. The relationship between landslide occurrence and triggering factors shows that, according to both the considered assumptions and the observations made, deep-seated landslides are triggered or reactivated together with superficial landslides once every 18 years, while superficial landslides as flows or falls occur once every 5 years. The results show that there is generally a low landslide hazard in the study zone, especially when compared to landslide susceptibility. This means that landslides are mainly dormant from a natural evolution point of view, but could be reactivated as a result of geomorphological, climate, or human changes. In any case, the landslide hazard is successfully assessed, with a prediction of a 6% annual probability of a high hazard in 5% of the area, intersecting with the main infrastructures of the region; thus, control strategies are justified in order to avoid damage in extraordinary rainfall periods. 相似文献
12.
13.
Sedimentary rocks of the Lower Cretaceous in the Subbetic of the Alamedilla area (province of Granada) were studied. In this area, a significant amount of redeposited sediments within the Carretero Formation were recorded. Resedimented material is mainly composed of Jurassic oolitic limestones and volcanic rocks, as well as of Neocomian hemipelagic sedimentary rocks (marly limestones and marls). All these redeposited sediments corresponding to rock fall and debris flow originated as the result of significant slopes in a very sharp submarine topography. Volcanism and the resultant volcanic edifices created this sharp slopes making up in some cases guyots. The volcanism was mainly active in the Middle Jurassic, although it persisted locally until Late Jurassic and Early Cretaceous, and controlled the sedimentation in this area of the Subbetic basin during most of the Mesozoic. The proposed genetic model is in agreement with a base-of-slope apron model with two significant special features: (1) the provenance of the clasts mainly from Jurassic outcrops with oolites deposited in guyots and isolated marine platforms, and volcanic submarine rocks, and (2) the palaeobathymetry of the deposits, relatively shallow and sporadically affected by storm waves. 相似文献
14.
This study focuses on storm deposits in the Muschelkalk facies of the Betic Cordillera (southern Spain) and interprets their deposition mechanisms. Three types of storm deposit are distinguished: (i) pot/gutter casts; (ii) tempestite beds; and (iii) storm‐winnowed deposits. Each deposit provides information about the carbonate platform environment in which it was deposited. The tempestite models proposed are: (i) the bypass‐zone tempestite model, occurring in a muddy ramp at the epicontinental basin margin. This model is characterized by potholes and gutters that form in a shoreline bypass‐zone during storms; (ii) the gradient‐current tempestite model in which frequent tempestite beds are related to storm gradient currents. Thickness and grain size decrease towards the deep distal ramp; and (iii) the winnowed deposit tempestite model whereby storm deposits are winnowed and deposited in the same environment with only short lateral transport having occurred. This model evokes more restricted and shallower conditions, lagoons or inland seas. The distribution of all these deposits in the stratigraphic sections studied corroborate the eustatic third‐order cycle identified, although the different features of the storm deposits and their positions in each section indicate a subsidence varying in time and space. In the transgressive stage, the margins of the epicontinental basin were a well‐developed ramp with potholes and gutters. In contrast, during the high sea‐level stage, storm deposits generated tempestite beds or storm‐winnowed deposits in the different areas. The epicontinental carbonate platform with ramp edges evolved into a complex depositional system of coastal and shallow‐marine environments with lagoons and restricted inland seas. Thus, the epicontinental platform underwent substantial change from the Late Anisian to the Late Ladinian and this is reflected in its storm deposits. 相似文献
15.
16.
Luis O'Dogherty Agustín Martín-Algarra Hans-Jürgen Gursky Roque Aguado 《International Journal of Earth Sciences》2001,90(4):831-846
Middle Jurassic radiolarites and associated pelagic limestones occur in the Rondaide Nieves unit of the Betic Cordillera, southern Spain. The Rondaide Mesozoic includes: (a) a thick succession of Triassic platform carbonates, comparable to the Alpine Hauptdolomit and Kössen facies; (b) Lower Jurassic pelagic limestones comparable to the Alpine Hierlatz and Adnet facies; (c) the Middle Jurassic Parauta Radiolarite Formation, described herein; and (d) a thin Upper Jurassic-Cretaceous condensed limestone succession. The Parauta Radiolarite Formation and associated limestones were studied with respect to stratigraphy, petrography, micropalaeontology (radiolarians, calcareous nanno- and microfossils) and facies. Radiolarite sedimentation occurred in the Middle Bathonian in a restricted and dysoxic deep Nieves basin, perched in the distal zone of a continental margin fringing the Tethyan ocean. This margin was adjacent to a young narrow oceanic basin between the South-Iberian margin and a continental block called Mesomediterranean Terrane. The Nieves basin was part of a marine corridor between the Proto-Atlantic and Piedmont-Ligurian basins of the Alpine Tethys. The regional tectonic position, the stratigraphical evolution since the Triassic, the age and the nature of the Mesozoic facies and the palaeogeographic relations to adjacent domains show striking analogies between the Betic Rondaide margin and coeval units of the Alps. 相似文献
17.
The Baza Fault: a major active extensional fault in the central Betic Cordillera (south Spain) 总被引:2,自引:0,他引:2
P. Alfaro J. Delgado C. Sanz de Galdeano J. Galindo-Zaldívar F. J. García-Tortosa A. C. López-Garrido C. López-Casado C. Marín-Lechado A. Gil M. J. Borque 《International Journal of Earth Sciences》2008,97(6):1353-1365
In the Guadix-Baza Basin (Betic Cordillera) lies the Baza Fault, a structure that will be described for the first time in
this paper. Eight gravity profiles and a seismic reflection profile, coupled with surface studies, indicate the existence
of a NE-dipping normal fault with a variable strike with N-S and NW-SE segments. This 37-km long fault divides the basin into
two sectors: Guadix to the West and Baza to the East. Since the Late Miocene, the activity of this fault has created a half-graben
in its hanging wall. The seismic reflection profile shows that the fill of this 2,000–3,000 m thick asymmetric basin is syntectonic.
The fault has associated seismicity, the most important of which is the 1531 Baza earthquake. Since the Late Tortonian to
the present, i.e. over approximately the last 8 million years, extension rates obtained vary between 0.12 and 0.33 mm/year
for the Baza Fault, being one of the major active normal faults to accommodate the current ENE–WSW extension produced in the
central Betic Cordillera. The existence of this fault and other normal faults in the central Betic Cordillera enhanced the
extension in the upper crust from the Late Miocene to the present in this regional compressive setting. 相似文献
18.
The Crevillente Fault Zone (CFZ) comprises a system of northeast to southwest oriented dextral faults that extend for some 600 km in the External Zones of the Betic Cordillera (SE Spain). The magnitude of lateral displacement related to this fault zone is not well constrained, and it is considered to be between 20 and 400 km. The stratigraphical and sedimentological criteria used in this work have proven effective in quantifying the magnitude of the displacement along this structure. We have analysed an oolitic turbidite facies in the Middle Jurassic of the Sierra de Ricote (Median Subbetic of Murcia Province). A detailed revision of ooidal limestone outcrops has revealed that the source area of these deposits was to the Internal Subbetic zone, north of Vélez Rubio (Almería Province). These two tectonic units, the Median and Internal Subbetic, are currently 75 km from each other and separated by the CFZ. The conclusions arising from our stratigraphical, petrological and sedimentological studies favour interpretation of a 75–100 km lateral displacement. After restoring the Late Jurassic–Cretaceous anticlockwise rotation of Iberia, the CFZ appears to belong to the E–W palaeofault system that is related to the extension of the South Iberian Continental Margin (SICM). Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
19.
J. Torres-Ruiz G. Garuti M. Gazzotti F. Gervilla P. Fenoll Hach-Ali 《Mineralogy and Petrology》1996,56(1-2):25-50
Summary Chromitites (Cr ores) of the Ojen lherzolite massif (Serranía de Ronda, Betic Cordillera, Southern Spain) were found to contain platinum-group minerals (PGM) as discrete inclusions in the chromite and in the associated silicates. The PGM mineralogy consists of sulfides [laurite, erlichmanite, malanite, unnamed (Ni-Fe-Cu)2 (Ir, Rh) S3, unidentified Pd-S], sulfarsenides (irarsite, hollingworthite, ruarsite, and osarsite), arsenides [sperrylite, unidentified (Pd, Ni)-As], one unidentified Pd-Bi compound, and native platinum group elements (PGE) consisting of Ru and Pt-Fe alloys. Textural considerations suggest that the PGE chalcogenides with S and As were formed in the high-temperature magmatic stages, as part of the chromite precipitation event (primary PGM), in contrast with the native PGE, which originated during the low-temperature serpentinization of the ultramafic host of the chromitites (secondary PGM).The primary PGM inclusions in the Ojen chromite are unusual compared with PGM inclusions in chromitites from tectonitic upper-mantle of ophiolites and other alpine-type complexes in that i) they display a great variety of mineral species sulfides, sulfarsenides and arsenides, and ii) comprise specific phases of all six PGE. The singularity of the primary PGM mineralization probably reflects high activities of both S and As during chromite precipitation at Serrania de Ronda to be related with particular physico-chemical conditions during uplifting of sub-continental, astenospheric mantle.The nature, composition, and paragenetic association of secondary PGM at Ojen confirm the relatively-high mobility of the PGE at low temperature, and indicate that remobilization can be selective under appropriate redox conditions causing separation and redistribution of the PGE in the rocks as a result of the alteration process.
With 7 Figures 相似文献
Platingruppen-Minerale in chromititen aus dem ojen-lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien)
Zusammenfassung Platingruppen-Minerale in Chromititen aus dem Ojen-Lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien) In den Chromititen (Cr-Erzen) aus dem Ojen-Lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien) warden Platingruppen-Minerale (PGM) als einzelne Einschlüsse im Chromit and in den begleitenden Silikaten gefunden. Die Mineralogie der PGM setzt sich aus Sulfiden [Laurit, Erlichmanit, Malanit, einem unbenannten (Ni-Fe-Cu)2 (Ir, Rh)S3 und einem nicht identifizierten Pd-S], Sulfarseniden (Irarsit, Hollingworthit, Ruarsit und Osarsit), Arseniden [Sperrylit, einem nicht identifizierten (Pd, Ni)-As], einer nicht identifizierten Pd-Bi-Verbindung sowie gediegenen Platingruppen-Elementen (PGE) bestchend aus Ru and Pt-Fe-Legierungen, zusammen. Texturelle Untersuchungen haben ergeben, daß die PGE-Chalkogenide mit S und As im Zuge der Chromitfällung (primäre PGM) in den hochtemperierten, magmatischen Stadien gebildet warden, während die gediegenen PGE während der niedriggradigen Serpentini sierung des ultramafischen Nebengesteins der Chromitite (sekundäre PGM) gebildet warden.Die primären PGM-Einschlüsse in den Ojen-Chromiten sind im Vergleich zu PGM-Einschlüssen in Chromititen aus dem tektonisierten oberen Mantel in Ophiolithen und anderen alpinotypen Komplexen ungewöhnlich: i) Einerseits zeigen sie eine große Vielfalt an Mineralarten aus der Gruppe der Sulfide, Sulfarsenide und Arsenide. ii) Andererseits enthalten sie spezifische Phasen aller sechs PGE. Die Einzigartigkeit der primären PGM-Mineralisation könnte hohe Aktivitäten von S and As während der Chromit-Fällung in Serranía de Ronda widerspiegeln, die mit besonderen physiko-chemischen Bedingungen während der Hebung des subkontinentalen, asthenosphärischen Mantels zusammenhängen.Die Art, die Zusammensetzung and die paragenetische Vergesellschaftung von sekundären PGM in Ojen bestätigen die relativ hohe Mobilität der PGE bei niedriger Temperatur und zeigen, daß die Remobilisierung unter geeigneten Redox-Bedingungen selektiv wirken kann, wodurch eine Trennung und Neuverteilung der PGE in den Gesteinen als Ergebnis des Alterationsprozesses bewirkt wird.
With 7 Figures 相似文献
20.
Three metapelitic xenolith suites in the Neogene Volcanic Province (NVP) of SE Spain (from SW to NE: El Hoyazo, Mazarrón and Mar Menor) originated by partial melting at different crustal depths, decreasing from 20–25 km in the SW to 9–12 km in the NE. Peak temperatures reached c. 900 °C. The xenolith source level is equated with the base of a felsic upper crust of high melting potential (‘fertility’). At El Hoyazo, this matches a thin, intracrustal low‐velocity zone recently inferred from seismic studies. Isostatic calculations indicate that this zone increases in thickness from SW to NE. A model of increasing upper crustal thinning from SW to NE in the NVP, accompanied by mafic underplating, is consistent with the 9 Ma petrological data, with current heat flow, seismic data and gravimetry. It is concluded that significant crustal extension occurred in the NVP in the late Miocene, i.e. after the main phase of widespread extension, exhumation of high‐pressure rocks and formation of the Alborán Sea. 相似文献