首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在内蒙古林西县西拉木伦断裂带内发育岩株状产出并具有不同程度变形特征的闪长岩体, 岩体侵入到双井片岩中.对该闪长岩进行了岩石学、地球化学、锆石LA-ICPMS U-Pb年龄和角闪石40Ar-39Ar年龄的研究.结果表明内蒙古林西县西拉木伦断裂带内的变形闪长岩侵位于早二叠世, 其锆石LA-ICPMS U-Pb年龄为286±1 Ma.岩浆来源于俯冲带流体/熔体交代作用而形成的富集地幔.岩石遭受了早侏罗世绿帘角闪岩相变质作用, 角闪石40Ar-39Ar年龄为188.7±1.4 Ma.结合研究区及邻区近年来的新成果认为索伦缝合带早古生代以来的镁铁质岩石均显示来源于相对富集LILE、LREE的地幔, 与俯冲流体或熔体的改造作用相关, 并且随着时代的更新改造程度显示增强的趋势.索伦缝合带在晚石炭世(~310 Ma)之前发生过闭合碰撞, 晚石炭世-早二叠世(~310~276 Ma)处于后造山伸展的背景, 在伸展环境下形成了华北北缘该时期广泛分布的闪长岩-花岗闪长岩带, 报道的闪长岩即为该时期的产物.晚二叠世缝合带局部区域存在洋盆, 洋盆的闭合导致了晚二叠世-中三叠世(~272~230 Ma)索伦缝合带的最终碰撞缝合, 最终碰撞缝合在空间上的不均一性形成了缝合带内该时期大量并存的同碰撞花岗岩和后碰撞花岗岩.索伦缝合带的缝合导致华北板块与其北部各微陆块的拼合, 此时蒙古-鄂霍次克海作为古太平洋的一个分支北东向展布于西伯利亚板块和拼合后的华北板块之间.早侏罗世蒙古-鄂霍次克海在蒙古东北部发生闭合, 本文报道的角闪石40Ar-39Ar年龄记录了洋壳闭合后陆-陆碰撞的变质时间, 之后研究区进入后造山伸展的环境.此时在古太平洋板块向华北板块俯冲应力的共同作用下, 华北东部在侏罗纪出现挤压机制与拉张机制的多次转换.晚侏罗世古太平洋板块俯冲方向转变后, 中国东部进入持续的拉张背景, 并转入西太平洋构造域的范畴.   相似文献   

2.
《地学前缘(英文版)》2019,10(3):1101-1111
Different final closing ages have been proposed for the evolution of the Paleo-Asian Ocean (PAO), including Late Silurian, pre-Late Devonian, Early Permian, Late-Permian and Late Permian–Early Triassic. Ophiolites represent fragments of ancient oceanic crust and play an important role in identifying the suture zone and unveiling the evolutionary history of fossil oceans. Our detailed geological, geochemical and geochronological investigations argue for the existence of Early Permian (297 Ma) SSZ type ophiolites in the Sunidyouqi area of central Inner Mongolia, China. The gabbros and basalts show LREE depleted REE patterns and left-leaning primitive mantle-normalized spider diagrams with variable negative Nb-Ta anomalies (Nb* = 0.24–1.28 and 0.29–0.55, respectively). The Sunidyouqi ophiolites were generated in a mature back-arc basin. The Sunidyouqi ophiolites share the same petrological, geochemical and geochronological characteristics with the other ophiolites along the Solonker suture zone, delineating a Late Paleozoic ocean and arc-trench system. This Late Paleozoic ocean and arc-trench system coincides with a Permian paleobiogeographical boundary, i.e. the boundary between the northern cold climate (Boreal faunal–Angaraland floral realm), and a southern warm climate (Tethys faunal–Cathaysian floral realm). A tectonic scenario was proposed at last for the closure of the SE PAO involving (1) Late Ordovician to Middle Permian continuous southward subduction beneath the northern margin of North China; (2) Carboniferous to Middle Permian continuous northward subduction the forming the Northern Accretionary Orogen; (3) Late Permian final closure of the SE PAO.  相似文献   

3.
《International Geology Review》2012,54(14):1801-1816
We present new geochronological and geochemical data for granites and volcanic rocks of the Erguna massif, NE China. These data are integrated with previous findings to better constrain the nature of the massif basement and to provide new insights into the subduction history of Mongol–Okhotsk oceanic crust and its closure. U–Pb dating of zircons from 12 granites previously mapped as Palaeoproterozoic and from three granites reported as Neoproterozoic yield exclusively Phanerozoic ages. These new ages, together with recently reported isotopic dates for the metamorphic and igneous basement rocks, as well as Nd–Hf crustal-residence ages, suggest that it is unlikely that pre-Mesoproterozoic basement exists in the Erguna massif. The geochronological and geochemical results are consistent with a three-stage subduction history of Mongol–Okhotsk oceanic crust beneath the Erguna massif, as follows. (1) The Erguna massif records a transition from Late Devonian A-type magmatism to Carboniferous adakitic magmatism. This indicates that southward subduction of the Mongol–Okhotsk oceanic crust along the northern margin of the Erguna massif began in the Carboniferous. (2) Late Permian–Middle Triassic granitoids in the Erguna massif are distributed along the Mongol–Okhotsk suture zone and coeval magmatic rocks in the Xing’an terrane are scarce, suggesting that they are unlikely to have formed in association with the collision between the North China Craton and the Jiamusi–Mongolia block along the Solonker–Xra Moron–Changchun–Yanji suture zone. Instead, the apparent subduction-related signature of the granites and their proximity to the Mongol–Okhotsk suture zone suggest that they are related to southward subduction of Mongol–Okhotsk oceanic crust. (3) A conspicuous lack of magmatic activity during the Middle Jurassic marks an abrupt shift in magmatic style from Late Triassic–Early Jurassic normal and adakite-like calc-alkaline magmatism (pre-quiescent episode) to Late Jurassic–Early Cretaceous A-type felsic magmatism (post-quiescent episode). Evidently a significant change in geodynamic processes took place during the Middle Jurassic. Late Triassic–Early Jurassic subduction-related signatures and adakitic affinities confirm the existence of subduction during this time. Late Jurassic–Early Cretaceous post-collision magmatism constrains the timing of the final closure of the Mongol–Okhotsk Ocean involving collision between the Jiamusi–Mongolia block and the Siberian Craton to the Middle Jurassic.  相似文献   

4.
伊犁地块南缘元古宙特克斯群变质岩中侵入有花岗岩类,其形成时代和构造背景一直没有详细的研究。文章通过野外观察和室内分析,确定花岗质侵入体主要由弱面理化黑云母花岗岩、强面理化二云母花岗岩和未变形黑云母花岗岩组成。全岩地球化学和锆石U-Pb年代学分析显示,弱面理化黑云母花岗岩和强面理化二云母花岗岩属于过铝质钙碱性系列,其年龄分别为438 Ma和426 Ma;未变形黑云母花岗岩则属于典型的钙碱性系列,富集大离子亲石元素,相对亏损高场强元素,其年龄介于400~380 Ma之间。结合前人对区域地质的研究认识,笔者认为这些花岗岩类记录了两期不同构造背景的岩浆作用,指示研究区经历了两阶段构造—岩浆演化,即早古生代过铝质钙碱性弱面理化黑云母花岗岩与强面理化二云母花岗岩形成于哈萨克斯坦微大陆汇聚拼贴过程的后碰撞造山环境;中—晚古生代钙碱性未变形黑云母花岗岩则形成于准噶尔洋俯冲作用的活动大陆边缘。  相似文献   

5.
内蒙古中部索伦-林西缝合带封闭时代的古地磁分析   总被引:14,自引:0,他引:14  
索伦-林西缝合带被认为是华北和西伯利亚地块间中亚洋(或古亚洲洋)最后闭合的界线。利用华北和西伯利亚地块的古地磁数据对比分析,结合相关地质资料,对两地块的碰撞拼合历史,以及位于两地块间相应的中亚洋盆最终闭合时代进行了分析。结果表明:(1)分隔华北和西伯利亚地块的中亚洋在晚泥盆世至晚石炭世期间进一步张开,纬度宽度扩大,大约在早二叠世初期,中亚洋达到最大纬度宽度,约39°;(2)早二叠世以后西伯利亚地块开始快速向南漂移,二叠纪末期(~250 Ma)和华北地块发生碰撞,导致索伦-林西缝合带的形成。  相似文献   

6.
内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨   总被引:15,自引:3,他引:12  
石玉若  刘翠  邓晋福  简平 《岩石学报》2014,30(11):3155-3171
内蒙古中部广泛出露花岗质岩类,这些花岗质岩类的时空分布及岩石组合类型的变化,反映了华北板块北缘与蒙古陆块碰撞拼合的进程.本文从花岗质岩类的角度对古亚洲洋在内蒙古中部地区的演化进行了探讨.古亚洲洋在该区的演化经历了十分复杂的过程,包括奥陶纪双向俯冲、志留纪拼贴/增生、泥盆纪拉张、二叠纪南部带俯冲和北部带拉张、并以晚古生代末至早中生代初发生的陆-陆碰撞为标志宣告该区洋盆演化的结束.  相似文献   

7.
The closure of Paleo-Asian Ocean is considered to have occurred along the Solonker Suture in the southernmost segment of the Central Asian Orogenic Belt (CAOB), the largest Phanerozoic accretionary orogen on the globe. The suture branches to the east to form the northern Hegenshan–Heihe Suture and the southern Solonker–Changchun Suture. The Hegenshan–Heihe Suture is an ideal natural laboratory for studying the post-collisional geodynamic processes operating in a soft collision zone driven by divergent double-sided subduction. Here we report results from an integrated study of the petrology, geochronology, geochemistry, and Sr–Nd–Hf isotopic compositions of the Early Carboniferous–Early Permian magmatic suite in the Hailar Basin of the Xing’an–Erguna Block. The Early Carboniferous igneous rocks are represented by 356–349 Ma andesitic tuffs, exhibiting typical subduction-related features, such as enrichment in large-ion lithophile elements and depletion in high-field-strength elements. These features, together with the relatively depleted Sr–Nd–Hf isotopic compositions, constant Nb/Y values, but highly variable Rb/Y and Ba values indicate that these rocks were generated by partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The Late Carboniferous–Early Permian magmatic suite (317–295 Ma) is characterized by high Sr contents (313–1080 ppm) and low Y contents (5–13 ppm), and these can be subdivided into calc-alkaline adakitic rocks and high-K calc-alkaline adakitic rocks. The calc-alkaline adakitic rocks have higher values of Sr/Y, (Sm/Yb)source normalized, and Mg#, and lower values of Y, Ybsource normalized, and K2O/Na2O than the high-K calc-alkaline adakitic rocks, which suggests that the former was generated by partial melting of foundered lower continental crust and the latter by partial melting of normal lower continental crust. Based on our new data, in conjunction with those in previous studies, we conclude that the tectonic evolution of the Hegenshan–Heihe Suture involved Early Carboniferous double-sided subduction of the Nenjiang Ocean, latest Early Carboniferous soft collision between the Xing’an–Erguna and Songliao blocks, and Late Carboniferous–Early Permian post-collisional extension. We also propose a new geodynamic scenario in which removal of the lithospheric root might have occurred in a soft collision zone during the post-collision period via repeated and localized lithospheric dripping, which results from combined effects of hydration weakening of the lithosphere caused by pre-collision subduction and asthenospheric stirring triggered by slab break-off.  相似文献   

8.
白音都西群是内蒙古中部白乃庙岛弧带以北和温都尔庙杂岩以南发育的一套中级变质岩系,为确定白音都西群的地层时代,笔者于稳定的白音都西群地层采集了两块新鲜的变质石英砂岩样品,共进行了100粒碎屑锆石LA-MC-ICP-MS测年。两件样品的锆石特征具相似性,指示其原岩主要是由同期或略早期的岩浆岩风化后就近沉积的产物。所有锆石的206Pb/238U表面年龄介于518~294 Ma之间,与华北板块北缘的古生代弧岩浆岩锆石年龄非常吻合,表明该区古生代弧岩浆岩是白音都西群的主要沉积源区。因此,白音都西群的原岩可能是一套弧前沉积建造,其形成时间应该是伴随着古亚洲洋的俯冲消减和古生代弧岩浆作用的整个过程,其后在碰撞造山过程中发生了变形和变质作用。由于白音都西群被晚二叠世未变形花岗岩(254 Ma)侵入,表明其原岩最终形成到发生变形变质作用应当介于294~254 Ma之间。故推测沿着索伦缝合带的碰撞缝合作用可能发生在早—中二叠世。  相似文献   

9.
本文对华北克拉通北缘东段辽宁北部法库地区东小陵岩体、前旧门岩体、胡家屯岩体及柏家沟岩体进行了岩相学、地球化学、锆石U-Pb定年以及Lu-Hf同位素研究,以此制约古亚洲洋东段演化过程。岩相学特征表明,本文所研究岩体主要为花岗质岩石,普遍遭受了后期的动力变质作用改造。锆石测年结果显示,东小陵岩体及前旧门岩体形成于中二叠世(264.6±5.9Ma、262.8±3.5Ma),胡家屯岩体及柏家沟岩体分别形成于晚二叠世(257.7±3.1Ma)及早三叠世(248.2±1.5Ma)。岩石地球化学表明,东小陵岩体及胡家屯岩体皆属于准铝质-弱过铝质、高钾钙碱性A型花岗岩,形成于造山后伸展环境;前旧门岩体属于准铝质-弱过铝质、钙碱性-高钾钙碱性高分异I型花岗岩,形成于火山弧环境;柏家沟岩体属于准铝质-弱过铝质、高钾钙碱性-钾玄岩性I型花岗岩,形成于同碰撞造山环境。研究区花岗质岩体皆富集大离子亲石元素(LILEs)和轻稀土元素(LREEs),并且亏损高场强元素(HFSEs)和重稀土元素(HREEs),结合Lu-Hf同位素特征,认为其原始岩浆应受到了俯冲流体交代的岩石圈地幔的影响。综合前人研究,本文认为在中二叠世-早三叠世期间,研究区经历了古亚洲板块的俯冲、闭合过程。  相似文献   

10.
额尔齐斯-西拉木伦对接带古生代沉积盆地演化   总被引:1,自引:0,他引:1       下载免费PDF全文
额尔齐斯-西拉木伦对接带位于西伯利亚板块、华北陆块和准噶尔地块之间, 其构造演化和古亚洲洋洋盆的打开与关闭有密切的关系.笔者在系统分析研究区3个二级和19个三级构造单元古生代岩石地层、生物地层及年代地层的基础上, 对沉积盆地进行原型恢复, 共划分出10个盆地类型.同时, 根据沉积盆地充填序列对研究区的构造-沉积演化做出了初步的论述.(1)早古生代-早石炭世古亚洲洋俯冲阶段; (2)早、晚石炭世之交的碰撞演化阶段; (3)晚石炭世-早二叠世碰撞及碰撞后演化阶段.研究认为古亚洲洋的闭合由西向东呈"剪刀式", 时间分别为早石炭世末(318 Ma)和中二叠世-早三叠世(260~245 Ma).三叠纪古亚洲洋消亡总体转为陆相环境.   相似文献   

11.
位于华北板块北缘四子王旗北部的西后壕子花岗岩体的CamecaIMS-1280-SIMS锆石U—Pb年龄为266Ma±2Ma。该岩体主要由二长花岗岩组成,以出现大量颗粒较大的白云母为特征,具有较高的SiO2含量(75.21%-76.69%),A/CNK值多大于1.1,CIPW标准矿物中刚玉的含量也都高于1%。在球粒陨石标准化稀土元素配分图解上,Eu具有强烈的负异常(δEu=0.03~0.11),REE呈现出明显的M型四分组效应,部分微量元素也表现出non-CHARAC的性质。在原始地幔标准化微量元素配分图上,元素Ba、Nb、sr和Ti相对亏损,Cs、Rb、Th和Pb相对富集。在构造环境判别图解中,所有样品均落入同碰撞花岗岩区域。结合区域地质背景及以上特征,西后壕子岩体应为强过铝质的高分异S型花岗岩,形成于二叠纪晚期的陆一陆碰撞环境中。270-260Ma期间,四子王旗地区发育EW向的碰撞花岗岩带,限定华北板块与南蒙古微大陆沿索伦缝合带的闭合时间为二叠纪晚期。  相似文献   

12.
The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations of the geological environments of key tectonic units. The Xilin Gol Complex, consisting of strongly deformed gneisses, schists and amphibolites, is such a key tectonic unit within the CAOB. Lenticular or quasi-lamellar amphibolites are dispersed throughout the complex, intercalated with biotite–plagioclase gneiss. Both rock types experienced amphibolite-facies metamorphism. The protolith of the amphibolite is a basic rock that intruded into the biotite–plagioclase gneiss at 319 ± 4 Ma based on LA-ICPMS zircon U–Pb dating. The basic intrusion was sourced from a modified magma that experienced crystal fractionation and was admixed with slab-derived fluids. The slab-derived fluids, which formed during Early Paleozoic oceanic subduction along the north-dipping Sonidzuoqi–Xilinhot subduction zone, mixed with the magma source and produced subduction-related geochemical signatures superimposed on volcanic arc chemistry. After Early Paleozoic oceanic subduction and arc-continent collision, a transient stage of extension occurred between 313 and 280 Ma in the Sonidzuoqi–Xilinhot area. Deformation and recrystallization during the switch from compression to extension and reheating by the later magmatic intrusions reset the isotope systems of minerals in the Xilin Gol Complex, recorded by a 312.2 ± 1.5 Ma biotite 40Ar/39Ar age from biotite–plagioclase gneiss, a 309 ± 12 Ma zircon intercept age and a 307.5 ± 3.5 Ma hornblende 40Ar/39Ar age from amphibolites in the complex. There was an arc/forearc-related marine basin at the southern margin of the Xilin Gol Complex during the Permian. The closure of the oceanic basin led to Late Paleozoic–Middle Triassic north-dipping subduction beneath the Xilin Gol Complex and induced the amphibolite-facies metamorphism of the complex. The final suturing of the Solonker zone occurred from 269 to 231 Ma. This latest amphibolite-facies metamorphism with pressures of 0.31–0.39 GPa and temperatures of 620–660 °C was recorded at 263.4 ± 1.4 Ma to the Xilin Gol Complex, as indicated by the hornblende 40Ar/39Ar age from the amphibolites, as well as several zircon ages of 260 ± 3–231 ± 3 Ma. The Xilin Gol Complex documented the progressive accretion of a single, long-lived subduction system at the southern margin of the south Mongolian microcontinent from the Early Paleozoic (~452 Ma) to Middle Triassic (~231 Ma). The CAOB shows protracted collision prior to final suturing.  相似文献   

13.
杨帆  姜艳艳  陈井胜  韩兴 《岩石学报》2022,(8):2467-2488
本文对华北克拉通北缘中段赤峰撰山子矿区二长闪长岩、花岗(斑)岩等进行了岩相学、地球化学、锆石U-Pb定年以及Hf同位素研究,以期对古亚洲洋演化形成制约。锆石U-Pb定年显示,二长闪长岩和花岗岩形成于早石炭世(341.0±2.2Ma、324.1±4.3Ma),花岗斑岩形成于晚二叠世(252.8±3.2Ma、252.0±1.5Ma)。岩石地球化学及Hf同位素表明,二长闪长岩为高钾钙碱性I型花岗岩,形成于火山弧环境,其源区可能是俯冲板片脱水交代的地幔楔部分熔融产生玄武质岩浆上涌,导致新生地壳物质的部分熔融,并有部分玄武质岩浆加入形成的产物;花岗岩及花岗斑岩均为高钾钙碱性A型花岗岩,花岗岩形成于火山弧环境,花岗斑岩形成于造山后伸展环境,二者皆为新生地壳部分熔融的产物。综合前人研究认为,早石炭世-晚二叠世,研究区经历了古亚洲洋俯冲、弧-陆碰撞以及造山后伸展等阶段。  相似文献   

14.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

15.
The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250–248 Ma,(2) granodiorites during 244–243 Ma, and(3) monzogranites and granodiorites during 232–230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO_2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250–248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244–243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing'an-Songliao composite block and the NCC. The 232–230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO; and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing'an-Songliao composite block and the NCC.  相似文献   

16.
《地学前缘(英文版)》2019,10(2):683-704
In the eastern part of the Central Asian Orogenic Belt (CAOB) in northeastern (NE) China, scattered outcrops of molasse deposits mark the ending of an orogeny and are crucial for understanding the evolution of the Paleo-Asian Ocean (PAO). However, the timing of tectonic events and the relationships among these strata remain controversial. To better constrain these geologic events, a comprehensive study of the detrital zircon U-Pb geochronology and geochemistry of the sandstones of the Kaishantun (KST) Formation and Kedao (KD) Group in eastern Jilin Province, NE China, was conducted. The KST Formation is traditionally considered a molasse deposit. The sandstones display low CIA, PIA and high ICV values and low Th/U and Rb/Sr ratios, which suggest that the rocks were derived from an immature intermediate-felsic igneous source and experienced a simple sedimentary recycling history with relatively weak chemical weathering. LA-ICP-MS U-Pb dating of detrital zircons from two samples of the KST Formation yields ages of 748–252 Ma, suggesting that the KST Formation was deposited between 254.5 Ma and 252 Ma in Late Permian. The zircons were mainly derived from the continental northern part of the North China Craton (NCC). In contrast, the U-Pb dating of detrital zircons from five samples of the KD Group yields ages of 2611–230 Ma, suggesting that the KD samples were deposited in the Early to Middle Triassic (ca. 248–233 Ma). The detrital zircon ages for the KD samples can be divided into groups with peaks at 2.5 Ga, 1.8 Ga, 800–1000 Ma, 500 Ma and 440–360 Ma, which suggest that the samples were derived from bidirectional provenances in the Jiamusi-Khanka Block and the NCC. These new data, combined with previously published results, suggest that at least three orogenic events occurred in central-eastern Jilin Province during the Early Permian (270–262 Ma), Early Triassic (254–248 Ma) and Middle–Late Triassic (242–227 Ma). The final closure of the PAO occurred during 242–227 Ma in the Middle–Late Triassic along the Changchun-Yanji suture zone. The detrital zircon geochronological data clearly record plate convergence and the scissor-like closure of the PAO in the eastern CAOB.  相似文献   

17.
狼山构造带位于索伦缝合带南西,华北北缘及中亚造山带南缘的结合位置,是研究中亚造山带晚古生代-早中生代构造-岩浆演化及地球动力学背景的重要场所.在该地区新识别出中三叠世早期具有埃达克岩特征的扎拉山岩体,该岩体岩石类型主要为花岗闪长岩及二长花岗岩,LA-ICP-MS锆石U-Pb定年结果显示该岩体的形成时代介于244.9±1.2 Ma~244.1±2.3 Ma.地球化学特征表明,该岩体具有较高的SiO2(68.77%~72.58%)、Al2O3(14.48%~16.28%)、Sr(287×10-6~455×10-6,平均值413×10-6)含量及Sr/Y比值(46.07~95.50),较低的Y(4.07×10-6~8.01×10-6)、Yb(0.43×10-6~0.78×10-6)、Cr(5.18×10-6~8.92×10-6)、Ni(1.34×10-6~7.71×10-6)含量及Mg#值(35.54~41.64),Na2O/K2O比值为0.86~1.19,重稀土元素强烈亏损,轻重稀土元素分馏明显(26.45 <(La/Yb)N < 56.13),铕异常较弱(0.82 < δEu < 1.02),具有C型埃达克岩特征.锆石Hf同位素分析结果显示εHf(t)值介于2.5~8.9,对应的二阶模式年龄TDM2介于707~1 115 Ma,表明其源区主要为年轻地壳.结合区域地质背景,结果表明内蒙古狼山地区中三叠世早期具有C型埃达克岩特征的扎拉山岩体应为古亚洲洋闭合之后,西伯利亚板块与华北板块碰撞造山阶段的产物,为加厚的下地壳部分熔融形成.   相似文献   

18.
冀北康保位于华北克拉通北缘中段,北靠古亚洲洋构造域(中亚造山带)。区内出露有小西沟、前孟家地、石柱梁、三老虎、新村和西五福堂等6个晚古生代花岗岩体,它们的锆石U-Pb年龄分别为260.6±1.6 Ma、264.1±1.7 Ma、269.5±2.7 Ma、276.3±1.9 Ma、280.4±2.0 Ma和284.7± 1.7 Ma等,表明这些花岗岩体形成于早-中二叠世。晚古生代(早-中二叠世)花岗岩体在冀北康保有规律地出露,应该与古亚洲洋的构造演化有关,可能反映了古亚洲洋的俯冲消减作用具有多期次的特点。  相似文献   

19.
富含继承锆石的过铝质花岗岩一般来源于富铝质岩石(如变泥质岩)的部分熔融,因而分析这些继承锆石的U-Pb年龄可以像分析沉积岩碎屑锆石的U-Pb年龄一样,提供过铝质花岗岩源区物质中碎屑沉积物物源区的丰富信息。本文报道了中部拉萨地块早侏罗世过铝质花岗岩的全岩地球化学和锆石U-Pb年代学数据,结合拉萨地块已有二叠纪和晚三叠世过铝质花岗岩的继承锆石年代学数据,总结了目前已有的拉萨地块过铝质花岗岩的继承锆石U-Pb年龄特征(共199个谐和测点)。这些过铝质花岗岩属强过铝质S型花岗岩,其中的继承锆石定义了1250~1100Ma(峰值1181±14Ma)和550~450Ma(峰值494±7Ma)2个最突出的年龄群,分别可比于拉萨地块古生代沉积岩的碎屑锆石年龄峰值(约1170Ma)和寒武纪火山岩的侵位时代,明显不同于西羌塘、安多和特提斯喜马拉雅新元古代-古生代沉积岩中的碎屑锆石年龄频谱。拉萨地块过铝质花岗岩中约1181Ma的继承锆石,可能与拉萨地块古生代沉积岩中的同期碎屑锆石一样,都来自澳大利亚南西部Albany-Fraser造山带和东南极Wilkes等地,而约494的继承锆石,既可能来自澳大利亚西部,也可能来自拉萨地块本地。本文提供了拉萨地块与澳大利亚大陆北缘具有古地理联系的过铝质花岗岩继承锆石U-Pb年龄证据。拉萨地块的研究实践表明,采用过铝质花岗岩继承锆石和古生代沉积岩碎屑锆石相结合的锆石U-Pb年代学方法,可为重建冈瓦纳大陆北缘其它微陆块的古地理和构造岩浆演化提供重要约束。  相似文献   

20.
The Northwestern Ordos Terrane (NOT) in the Western North China Craton (W-NCC) comprises the northwestern Ordos Basin in the east and the eastern Alxa Massif in the west, bound by the Helanshan Tectonic Belt (HTB). The key position makes the NOT crucial for understanding the evolutionary processes of the W-NCC and particularly the tectonic relation of the Alxa Massif with the W-NCC. In this study, petrologic, stratigraphic and geochronologic studies were conducted on Permo-Carboniferous successions in the NOT. Stratigraphic correlation reveals that Carboniferous marine successions display a transgressive sequence with a slight westward-deepening facies variation, evidenced by the continuous onlap of tidal-flat layers toward the east. The Permian nonmarine strata in the HTB and the Ordos Basin have no substantial facies variation, defining an upward regressive sequence from deltaic to fluvial associations, while time-equivalent units in the eastern Alxa Massif have been eroded. The generally SSW-directed paleocurrents suggest that Permo-Carboniferous siliciclastic materials were derived from a highland to the northeast. The unified sedimentary system in the NOT constrains the Alxa Massif to be part of the W-NCC. The Lower Carboniferous sandstone contain zircons with a concentrated age cluster of 1700–2700 Ma, comparable to Archean to Paleoproterozoic crystalline basement in the northern W-NCC. By contrast, in addition to zircons of 1700–2700 Ma, Late Carboniferous and Permian sandstones all contain abundant Paleozoic zircons with two age clusters around ~300 Ma and ~420 Ma, which are similar to age patterns of Paleozoic magmatism in the northern W-NCC. Zircon age profile and sandstone modal composition indicate the origin from an Andean-type continental arc. The Permo-Carboniferous tectono-sedimentary processes of the NOT should occur in a marginal basin behind the continental arc along the northern W-NCC in response to the southward subduction of Solonker Ocean, southern branch of Paleo-Asian Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号