首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The problem of mantle metasomatism vs. crustal contamination in the genesis of arc magmas with different potassium contents has been investigated using new trace element and Sr–Nd–Pb isotopic data on the island of Vulcano, Aeolian arc. The analysed rocks range in age from 120 ka to the present day, and cover a compositional range from basalt to rhyolite of the high-K calc-alkaline (HKCA) to shoshonitic (SHO) and potassic (KS) series. Older Vulcano products (>30 ka) consist of HKCA–SHO rocks with SiO2=48–56%. They show lower contents of K2O, Rb and of several other incompatible trace element abundances and ratios than younger rocks with comparable degree of evolution. 87Sr/86Sr ranges from 0.70417 to 0.70504 and increases with decreasing MgO and compatible element contents. 206Pb/204Pb ratios display significant variations (19.31 to 19.76) and are positively correlated with MgO, 143Nd/144Nd (0.512532–0.512768), 207Pb/204Pb (15.66–15.71) and 208Pb/204Pb (39.21–39.49). Overall, geochemical and isotopic data suggest that the evolution of the older series was dominated by assimilation–fractional crystallisation (AFC) with an important role for continuous mixing with mafic liquids. Magmas erupted within the last 30 ka consist mostly of SHO and KS intermediate and acid rocks, with minor mafic products. Except for a few acid rocks, they display moderate isotopic variations (e.g. 87Sr/86Sr=0.70457–0.70484; 206Pb/204Pb=19.28–19.55, but 207Pb/204Pb=15.66–15.82), which suggest an evolution by fractional crystallisation, or in some cases by mixing, with little interaction with crustal material. The higher Sr isotopic ratios (87Sr/86Sr=0.70494–0.70587) of a few, low-volume, intermediate to acid rocks support differentiation by AFC at shallow depths for some magma batches. New radiogenic isotope data on the Aeolian islands of Alicudi and Stromboli, as well as new data for lamproites from central Italy, are also reported in order to discuss along-arc compositional variations and to evaluate the role of mantle metasomatism. Geochemical and petrological data demonstrate that the younger K-rich mafic magmas from Vulcano cannot be related to the older HKCA and SHO ones by intra-crustal evolutionary processes and point to a derivation from different mantle sources. The data from Alicudi and Stromboli suggest that, even though interaction between magma and wall rocks of the Calabrian basement during shallow level magma evolution was an important process locally, a similar interpretation can be extended to the entire Aeolian arc. Received: 27 September 1999 / Accepted: 24 May 2000  相似文献   

2.
Sr, Nd, and Pb isotope data for basaltic rocks of different ages from Kunashir Island (southern Kurile island arc) provide clues to investigate the subduction magmatic history. Signatures of a high-temperature slab component (melt and/or supercritical liquid produced by melting of slab sediments) involved in Early Miocene–Pleistocene back-arc basaltic magmatism indicate a relatively hot (> 800 °C) slab surface. Depleted isotope characteristics of Holocene basaltic lavas in both volcanic front and back arc indicate their origin with the participation of a cold aqueous fluid produced by dehydration of altered oceanic crust of the Pacific MORB type. The difference in geological, geochemical and isotope patterns in the Pleistocene and the Holocene lavas may be a response to stress change from extension to compression in the Kurile back-arc basin and the Kurile arc.  相似文献   

3.
Pb, Sr and Nd isotope variations are correlated in diverse lavas erupted at small seamounts near the East Pacific Rise. Tholeiites are isotopically indistinguishable from MORB (206Pb/204Pb=18.1–18.5; 87Sr/86Sr=0.7023–0.7028; 143Nd/144Nd=0.51326-0.51308); associated alkali basalts always show more radiogenic Pb and Sr signatures (206Pb/204Pb=18.8–19.2; 87Sr/86Sr=0.7029–0.7031) and less radiogenic Nd (143Nd/144Nd=0.51289–0.51301). The isotopic variability covers 80% of the variability for Pacific MORB, due to the presence of small-scale heterogeneity in the underlying mantle. Isotope compositions also correlate with trace element ratios such as La/Sm. Tholeiites at these seamounts have 3He/4He between 7.8–8.7 R A(R A= atmospheric ratio), also indistinguishable from MORB. He trapped in vesicles of alkali basalts, released by crushing in vacuo, has low 3He/4He (1.2–2.6 R)Ain conjunction with low helium concentrations ([He]<5×10–8 ccSTP/g). In many cases post-eruptive radiogenic ingrowth has produced He isotope disequilibrium between vesicles and glass in the alkali basalts; subatmospheric 3He/4He ratios characterize the He dissolved in the glass which is released by melting the crushed powders. The narrow range of 3He/4He in the vesicles of the alkali basalts suggests that low 3He/4He is a source characteristic, but given their low [He] and high (U + Th), pre-eruptive radiogenic ingrowth cannot be excluded as a cause for low inherited 3He/4He ratios. Pb, Sr and Nd isotope compositions in lavas erupted at Shimada Seamount, an isolated volcano on 20 m.y. old seafloor at 17°N, are distinctly different from other seamounts in the East Pacific (206Pb/204Pb=18.8–19.0, 87Sr/ 86Sr0.7048 and 143Nd/144Nd0.51266). Relatively high 207Pb/204Pb (15.6–15.7) indicates ancient (>2 Ga) isolation of the source from the depleted upper mantle, similar to Dupal components which are more prevalent in the southern hemisphere mantle. 3He/4He at Shimada Seamount is between 3.9–4.8 R A. Because the helium concentrations range up to 1.5×10–6, the low 3He/4He can not be due to radiogenic accumulation of 4He in the magma for reasonable volcanic evolution times. The low 3He/4He may be due to the presence of enriched domains within the lithosphere with high (U + Th)/He ratios, possibly formed during its accretion near the ridge. Alternatively, the low 3He/4He may be an inherent characteristic of an enriched component in the mantle beneath the East Pacific. Collectively, the He-Pb-Sr-Nd isotope systematics at East Pacific seamounts suggest that the range of isotope compositions present in the mantle is more readily sampled by seamount and island volcanism than by axial volcanism. Beneath thicker lithosphere away from the ridge axis, smaller degrees of melting in the source regions are less efficient in averaging the chemical characteristics of small-scale heterogeneities.  相似文献   

4.
Summary The timing of Zn–Pb mineralization hosted by early dolomitized lagoonal limestones (Crest facies) at Bleiberg (Carinthia, Austria) has been constrained using Sr-isotopes. This late stage Zn–Pb mineralization is a special feature of the Bleiberg deposit. Samples of the mineralized Crest facies are characterized by higher concentrations of minor and trace elements (except Ba and Sr) compared to samples from the weakly mineralized Wetterstein limestone of the lagoonal facies. The samples from the Crest facies indicate that a fluid with a minimum 87Sr/86Sr ratio of 0.7083 reacted at 210±30 Ma with carbonate rocks having 87Sr/86Sr ratios of approximately 0.7077 during a late stage of ore formation. The 87Sr/86Sr ratios correlate with the Mn and Cl concentrations. Lead isotope data of whole rock samples of Bleiberg yielded an isochron age of 180±40 Ma. They furthermore confirm the presence of two types of common lead; an isotopically distinct ore lead component is present within and close to the ore bodies. The other common Pb component is present in host rocks and in gangue minerals and is distinguished from the ore lead by lower 207Pb/204Pb and 208Pb/204Pb ratios. The Sr and the Pb ages are consistent with geological evidence indicating a Triassic age of Pb–Zn mineralization and support genetic models emphasizing the role of bacteriogenic sulfate reduction at low temperatures prior to subsidence and burial. Elevated 87Sr/86Sr values (>0.7080) of gangue minerals indicate an epigenetic origin of strontium. Our results are consistent with a genetic model postulating formation of the ore-bearing hydrothermal fluids “at depth” where they leached lead from pre-Upper Carboniferous basement rocks.  相似文献   

5.
A structural analysis carried out on the volcanic products of the islands of Salina, Lipari and Vulcano (Aeolian archipelago) points out that the large-scale tectonic setting is dominated by NW-SE trending right-lateral extensional strike-slip faults and by N-S to NE-SW trending normal faults and fractures. This fault pattern generates pull-apart type structures, developing between different right-hand overlapping fault segments and a characteristic extensional imbricate fan geometry at the tip of the major strike-slip faults. All the structures, representing the surface expression of an active crustal discontinuity which controls the evolutionary history of the magmatism of the three islands, are kinematically compatible with a N100°E extension related to a rifting process affecting southern Italy.  相似文献   

6.
Quartz diorites represent the earliest (ca. 540 Ma) and most primitive plutonic rocks in the Pan African Damara belt and they pre-date the main phase of high-T regional metamorphism. Two suites of synorogenic quartz diorites are unusual among Damaran intrusive rocks in their elemental and isotopic features. Comparison of the diorite compositions with melts from amphibolite-dehydration melting experiments points to a garnet-bearing meta-tholeiite, probably enriched in K2O, as a likely source rock. Partial melting processes generated mafic (ca. 50 wt% SiO2) quartz diorites in the deep crust at temperatures of between 1,000 and 1,100 °C, based on comparison with experimental results and similar temperature estimates based on P2O5 solubility in mafic rocks. Subsequently, the quartz diorites evolved by multistage, polybaric differentiation processes including fractional crystallization of mainly hornblende and plagioclase and assimilation of felsic basement gneisses. Although their chemical characteristics (high LILE, low HFSE) resemble those of other quartz diorites with calc-alkaline affinities, they differ in their enriched Sr (initial 87Sr/86Sr: 0.70943-0.71285), Nd (initial ) Nd: -9.1 to -15.2 ) and O ('18O: 6.8-8.1‰) isotope compositions. Neodymium model ages (TDM) that range from 1.7 to 2.2 Ga and large variation in 207Pb/204Pb relative to 206Pb/204Pb indicates involvement of ancient crustal material. Lead (206Pb/204Pb: 17.08-17.23, 207Pb/204Pb: 15.53-15.62, 208Pb/204Pb: 37.71-38.16) isotope compositions are strongly retarded, indicating that the source underwent a pre-Pan-African U/Pb fractionation and U depletion. It is proposed that the quartz diorites originated by synorogenic high temperature melting of mafic lower crust. This contrasts with previous suggestions favouring an origin of these rocks by melting of an enriched mantle during Pan-African times with characteristics modified by subduction of oceanic crust and sedimentary rocks.  相似文献   

7.
We present a comprehensive geochemical data set for a suite of back-arc alkaline volcanic rocks from James Ross Island Volcanic Group (JRIVG), Antarctic Peninsula. The elemental and isotopic (Sr, Nd, Pb and Li) composition of these Cenozoic basalts emplaced east of the Antarctic Peninsula is different from the compositions of the fore-arc alkaline volcanic rocks in Southern Shetlands and nearby Bransfield Strait. The variability in elemental and isotopic composition is not consistent with the JRIVG derivation from a single mantle source but rather it suggests that the magma was mainly derived from a depleted mantle with subordinate OIB-like enriched mantle component (EM II). The isotopic data are consistent with mantle melting during extension and possible roll-back of the subducted lithosphere of the Antarctic plate. Magma contamination by Triassic–Early Tertiary clastic sediments deposited in the back-arc basin was only localized and affected Li isotopic composition in two of the samples, while most of the basalts show very little variation in δ7Li values, as anticipated for “mantle-driven” Li isotopic composition. These variations are difficult to resolve with radiogenic isotope systematics but Li isotopes may prove sensitive in tracking complex geochemical processes acting through the oceanic crust pile, including hydrothermal leaching and seawater equilibration.  相似文献   

8.
In order to better understand the role of fluids during subduction and subsequent exhumation, we have investigated whole-rock and mineral chemistry (major and trace elements) and Li, B as well as O, Sr, Nd, Pb isotopes on selected continuous drill-core profiles through contrasting lithological boundaries from the Chinese Continental Scientific Drilling Program (CCSD) in Sulu, China. Four carefully selected sample sets have been chosen to investigate geochemical changes as a result of fluid mobilization during dehydration, peak metamorphism, and exhumation of deeply subducted continental crust. Our data reveal that while O and Sr-Nd-Pb isotopic compositions remain more or less unchanged, significant Li and/or B isotope fractionations occur between different lithologies that are in close contact during various metamorphic stages. Samples that are supposed to represent prograde dehydration as indicated by veins formed at high pressures (HP) are characterized by element patterns of highly fluid-mobile elements in the veins that are complementary to those of the host eclogite. A second sample set represents a UHP metamorphic crustal eclogite that is separated from a garnet peridotite by a thin transitional interface. Garnet peridotite and eclogite are characterized by a >10% difference in MgO, which, together with the presence of abundant hydroxyl-bearing minerals and compositionally different clinopyroxene grains demonstrate that both rocks have been derived from different sources that have been tectonically juxtaposed during subduction, and that hydrous silicate-rich fluids have been added from the subducting slab to the mantle. Two additional sample sets, comprising retrograde amphibolite and relatively fresh eclogite, demonstrate that besides external fluids, internal fluids can be responsible for the formation of amphibolite. Li and B concentrations and isotopic compositions point to losses and isotopic fractionation during progressive dehydration. On the other hand, fluids with isotopically heavier Li and B are added during retrogression. On a small scale, mantle-derived rocks may be significantly metasomatized by fluids derived from the subducted slab. Our study indicates that during high-grade metamorphism, Li and B may show different patterns of enrichment and of isotopic fractionation.  相似文献   

9.
Leucocratic granites of the Proterozoic Kaoko Belt, northern Namibia, now preserved as meta-granites, define a rock suite that is distinct from the surrounding granitoids based on their chemical and isotopic characteristics. Least evolved members of this ~1.5–1.6-Ga-old leucogranite suite can be distinguished from ordinary calc-alkaline granites that occur elsewhere in the Kaoko Belt by higher abundances of Zr, Y, and REE, more radiogenic initial εNd values and unradiogenic initial 87Sr/86Sr. The leucogranites have high calculated zircon saturation temperatures (mostly > 920°C for least fractionated samples), suggesting that they represent high-temperature melts originating from deep crustal levels. Isotope data (i.e., εNdi: +2.3 to –4.2) demonstrate that the granites formed from different sources and differentiated by a variety of processes including partial melting of mantle-derived meta-igneous rocks followed by crystal fractionation and interaction with older crustal material. Most fractionation-corrected Nd model ages (TDM) are between 1.7 and 1.8 Ga and only slightly older than the inferred intrusion age of ca. 1.6 Ga, indicating that the precursor rocks must have been dominated by juvenile material. Epsilon Hf values of zircon separated from two granite samples are positive (+11 and +13), and Hf model ages (1.5 and 1.6 Ga) are similar to the U–Pb zircon ages, again supporting the dominance of juvenile material. In contrast, the Hf model ages of the respective whole rock samples are 2.3 and 2.4 Ga, demonstrating the involvement of older material in the generation of the granites. The last major tectonothermal event in the Kaoko Belt in the Proterozoic occurred at ca. 2.0 Ga and led to reworking of mostly 2.6-Ga-old rocks. However, the presence of 1.6 Ga “post-collisional” granites reflects addition of some juvenile mantle-derived material after the last major tectonic event. The results suggest that similar A-type leucogranites are potentially more abundant in crustal terranes but are masked by AFC processes. In the case of the Kaoko Belt, it is suggested that this rock suite indicates a yet unidentified period of mantle-derived crustal growth in the Proterozoic of South Western Africa.  相似文献   

10.
The reasons for the isotopic heterogeneity of the mantle are analyzed in this paper on the basis of published isotopic data. It was shown that the observed variations in the Sr, Nd, Hf, and Pb isotopic compositions of oceanic basalts cannot be explained by mixing of a finite number of homogeneous reservoirs (components). The considerable variations in the contents of Rb, Sr, Sm, Nd, Lu, Hf, U, Th, and Pb and ratios of these and other trace elements in tholeiitic basalts indicate that the chemical heterogeneity of mantle-derived rocks is inherited in part from their sources. Oceanic tholeiitic basalts show a tight correlation between the variances of Nd, Hf, Sr, and Pb isotopic ratios and the variances of respective radiogenic additions that could be accumulated in these rocks over a time period of 〈t〉 = 1.8 Gyr. This paradox clearly indicates that variations in all the mentioned isotopic systems in the mantle cannot be understood without the analysis of the geochemical heterogeneity of rocks.The close to lognormal distributions of lithophile trace elements in oceanic tholeiitic basalts and the character of correlations between them suggest that magmatic differentiation was the major mechanism of the formation of chemical heterogeneity in the mantle. The role of metasomatism in the global transport of trace elements and formation of the geochemically heterogeneous mantle is probably rather limited. Intrusive processes within the mantle could result in the development of chemical and, after a period of time, isotopic anomalies in the mantle. Simple calculations show that long-lived geochemical anomalies related to alkaline magmatism could be responsible for EM-I type isotopic anomalies, and geochemical anomalies produced in the mantle by enriched tholeiitic melts could be sources of EM-II type isotopic anomalies. The analysis of the distribution of the isotopic compositions of mantle-derived igneous rocks in various “isochron” coordinates suggested that the formation of geochemical anomalies in the mantle is a long-term process lasting for hundreds of millions of years. Nonetheless, trends approaching 4.5 Ga were never observed in such diagrams, i.e., the mantle is in general rejuvenated in all isotopic systems. Both on global and local scales, there are no mantle domains that have remained geochemically closed and isolated since the Earth’s formation. The entire mantle is involved in material exchange processes.The development of isotopic systems in the mantle was explored by means of statistical modeling accounting for the tendency of a continuous increase in the chemical heterogeneity of the mantle source and the tendency of obliteration of the isotopic heterogeneity owing to the convective mixing in the mantle. The modeling demonstrated that the character of the isotopic heterogeneity of the mantle is statistically consistent with the character of its chemical heterogeneity. The mantle isotopic anomalies HIMU, EM-I, and EM-II were generated by two simultaneous processes: the magmatic differentiation of mantle material and its not very efficient mixing.  相似文献   

11.
The Central Asian Orogenic Belt (CAOB) is one of the most important regions for Cu, Au and polymetallic and rare metallic (Li, Be, Nb, Ta) mineralization over the world. Most of the ore deposits in the CAOB are closely associated with granitoids. Available Sr, Nd, S and Pb isotopic data indicate that the metallogenic epoch and sources of the mineral deposits in the CAOB are consistent with that of the regional granites. Available data suggest that mantle sources could have played an important role in the Paleozoic to Mesozoic mineralization in the CAOB.  相似文献   

12.
Summary The Tyrrhenian border of the Italian peninsula has been the site of intense magmatism from Pliocene to recent times. Although calc-alkaline, potassic and ultrapotassic volcanism overlaps in space and time, a decrease of alkaline character in time and space (southward) is observed. Alkaline ultrapotassic and potassic volcanic rocks are characterised by variable enrichment in K and incompatible elements, coupled with consistently high LILE/HFSE values, similar to those of calc-alkaline volcanic rocks from the nearby Aeolian arc. On the basis of mineralogy and major and trace element chemistry two different arrays can be recognised among primitive rocks; a silica saturated trend, which resulted in formation of leucite-free mafic rocks, and a silica undersaturated trend, charactrerised by leucite-bearing rocks. Initial 87Sr/86Sr and 143Nd/144Nd values of Italian ultrapotassic and potassic mafic rocks range from 0.70506 to 0.71672 and from 0.51173 to 0.51273, respectively. 206Pb/204Pb values range between 18.50 and 19.15, 207Pb/204Pb values range between 15.63 and 15.70, and 208Pb/204Pb values range between 38.35 and 39.20. The general εSr vs. εNd array, along with crustal lead isotopic values, clearly indicates that a continental crustal component has played an important role in the genesis of these magmas. The main question is where this continental crustal component has been acquired by the magmas. Volcanological and petrologic data indicate continental crustal contamination to be a leading process along with fractional crystallisation and magma mixing. Considering, however, only the samples thought to represent primary magmas, which have been in equilibrium with their mantle source, a clearer picture emerges. A large variation of εSr vs. εNd is still observed, with εSr from −2 to +180 and εNd from + 2 to −12. A bifurcation of this array is observed in the samples that plot in the lower right quadrant, with mafic leucite-bearing Roman Province rocks buffered at εSr = + 100 whereas the mafic leucite-free potassic and ultrapotassic rocks point to strongly radiogenic Sr compositions. We may argue that mafic leucite-bearing Roman Province rocks point to εSr and εNd values similar to those of Miocene carbonate sediments whereas mafic leucite-free potassic and ultrapotassic rocks point to a silicate upper crust end-member. Lead isotopes plot well inside the field of island arcs, overlapping the values of pelagic sediments as well, but bifurcation between the samples north and south of Rome is observed. The main characteristic for the mantle source of Italian potassic and ultrapotassic magmas is the clear upper crustal signature acquired prior to partial melting through metasomatic agents released by the subducted slab. In addition, one lithospheric mantle source in the north and an asthenospheric mantle source, pointing to an HIMU reservoir, in the south were recognised. The chemical and isotopic differences observed between the northern and southern sectors of the magmatic region were possibly due to the presence of a carbonate-rich component in the crustal enriching agent in the south. One crustal component might have been generated by melting of silicate metasedimentary rocks or sediments from an ancient subducted slab. The second one might reflect the activity of mostly CO2-rich fluid released more recently by the incipient subduction of carbonate sedimentary rocks. Received February 16, 2000; revised version accepted September 6, 2001  相似文献   

13.
The origin and age of the hydrothermal fluids related to the precipitation of fluorite, barite and calcite in the Villabona, La Collada and Berbes localities (Asturias fluorspar district, N Spain) have been evaluated from Sr and Nd radiogenic isotopes. Sr isotope data (87Sr / 86Sr = 0.7081 to 0.7096) are compatible with mixing between seawater and a more evolved groundwater that interacted with the basement. From Nd isotopes in fluorite, an isochron age of 185 ± 29 Ma (Lower Jurassic) was obtained, consistent with other hydrothermal events in the Iberian Peninsula and Europe. These constraints are essential to proceed with a quantitative model for the genesis of the mineralization that includes fluid and heat flow together with reactive transport of solutes.  相似文献   

14.
Pb, Sr, Nd, and Hf isotopic relationships among basalts from the Hawaiian Islands suggest that these basalts were derived from three sources; the oceanic lithosphere (Kea end member), the depleted asthenosphere (posterosional end member) and a deep-mantle plume (Koolau end member).Hawaiian tholeiites are derived within the lithosphere and the isotopic trends collectively defined by the tholeiite data are interpreted as a plume-lithosphere mixing trend. The isotopic characteristics of late-stage basalts are derived from the tholeiite source (lithosphere + plume) with additional input from the lithosphere, asthenosphere, or both. These basalts probably originate from near the asthenosphere-lithosphere boundary. Posterosional basalts are derived from the depleted asthenosphere, but their isotopic characteristics have been slightly modified by either the plume or the source of previously erupted volcanics. The isotopic data require little or no mixing of asthenospheric material into the plume during tholeiite production and thus are consistent with the concept of a rapidly ascending, fluid-rich plume. In addition to providing a source of heat, the plume may supply volatiles to both the sources of tholeiites and posterosional basalts.The isotopic characteristics of the Koolau (plume) component are unique among OIB sources. If undifferentiated or “primitive” mantle material still exists, then the radiogenic-isotope data for Koolau in combination with rare gas data for Hawaiian basalts in general suggest that the Hawaiian plume may be derived from such material. In any case, the Hawaiian Islands data, when compared to those of other OIB, serve to illustrate the isotopically diverse nature of mantle sources.  相似文献   

15.
16.
Crystal-rich materials (scoriae and lava flows) emitted during the 1985–2000 activity of Stromboli were taken into consideration for systematic study of bulk rock/matrix glass chemistry and in particular for the study of chemical and textural zoning of plagioclase, the most abundant mineral phase. Over the considered time period, bulk rock composition remained fairly constant in both major (SiO2 49.2–50.9 wt% and K2O 1.96–2.18 wt%) and trace elements. The quite constant chemistry of matrix glasses also indicates that the degree of crystallization of magma was maintained at around 50 vol%. Plagioclase ranges in composition between An62 and An88 and is characterized by alternating, <10–100 m thick, bytownitic and labradoritic concentric layers, although the dominant and representative plagioclase of scoriae is An68. The labradoritic layers (An62–70) show small-scale (1–5 µm), oscillatory zoning, are free of inclusions, and appear to record episodes of slow crystal growth in equilibrium with a degassed liquid having the composition of the matrix glass. In contrast the bytownitic layers (An70-An88) are patchy zoned, show sieve structure with abundant micrometric glass inclusions and voids, and are attributed to rapid crystal growth.A key to understanding the origin of bytownitic layers can be retrieved from the texture and composition of the coronas of plagioclase xenocrysts, inherited from crystal-rich magma, in nearly aphyric pumice which are erupted during more energetic events and represent a deep, volatile-rich, HK-basaltic magma. They show a continuum from fine-sieve to evident skeletal texture from the inner to the outer part of the corona associated with normal compositional zoning from An90 to An75. In the light of these observations, we propose that input of H2O-rich melt blobs, and their mixing with the residing magma, causes partial dissolution of the labradoritic layers followed by the growth of bytownitic composition whose sieve texture attests of rapid crystallization occurring under undercooling conditions mainly induced by degassing. As a whole, the zoning of plagioclase in the scoriae records successive and discrete intrusions of volatile-rich magma blobs, its degassing and mixing with the resident degassed magma at shallow level.Editorial responsibility: T.L. GroveAn erratum to this article can be found at  相似文献   

17.
 The aim of this paper is to verify whether lichens have the capacity to accumulate atmospheric contaminators linked to volcanic activity. About 100 lichens were collected in 1994 and 1995 from two active volcanic areas in Italy: Mount Etna and Vulcano Island. Twenty-seven elements were analyzed for each individual lichen using Instrumental Neutronic Activation Analysis and Inductively Coupled Plasma-Mass Spectrometry. Lichen composition reflects the contribution of the volcanic particulate material, and the two areas investigated can be distinguished on the basis of the concentration of some lithophile elements. Moreover, the distribution in lichens of the elements (As, Sb, Br, Pb) – derived from gas emissions (plume, fumaroles) – also shows different geochemical trends on Mt. Etna and Vulcano. Received: 20 April 1998 · Accepted: 4 July 1998  相似文献   

18.
Crystals of challacolloite, KPb2Cl5, and hephaistosite, TlPb2Cl5, from volcanic sublimates formed on the crater rim of the “La Fossa Crater” at Vulcano, Aeolian Archipelago, Italy, were investigated. Chemical compositions were ${\left( {{\text{K}}_{{0.93}} {\text{Tl}}_{{0.02}} } \right)}_{{\Sigma = 0.95}} {\text{Pb}}_{{2.04}} {\left( {{\text{Cl}}_{{4.90}} {\text{Br}}_{{0.11}} } \right)}_{{\Sigma = 5.01}} $ and ${\text{Tl}}_{{0.94}} {\text{Pb}}_{{2.01}} {\left( {{\text{Cl}}_{{4.91}} {\text{Br}}_{{0.14}} } \right)}_{{\Sigma = 5.05}} $ , respectively. Single crystal X-ray measurements showed monoclinic symmetry for both phases, space group P21/c, with the following unit-cell parameters: a = 8.8989(4), b = 7.9717(5), c = 12.5624(8) Å, β = 90.022(4)°, V = 891.2(1) Å3, Z = 4 (challacolloite) and a = 9.0026(6), b = 7.9723(6), c = 12.5693(9) Å, β = 90.046(4)°, V = 902.1(1) Å3, Z = 4 (hephaistosite). The structure refinements converge to R = 3.99% and R = 3.86%, respectively. The effects of Br?Cl and K?Tl substitutions on the structure of these natural compounds have been discussed.  相似文献   

19.
Vein fluorite deposits (Tebarray, Lanuza, Bielsa-Parzán, Bizielle and Yenefrito) as well as one MVT-style fluorite mineralization (Portalet) in the Central Pyrenees are the focus in this contribution. These deposits are made up of fluorite, barite, base metal sulphides, calcite, and quartz and are hosted in sedimentary rocks and granites of Palaeozoic age. Generally, these mineral occurrences, typically associated with Late Palaeozoic steeply dipping faults are similar with respect to geologic setting, mineralogy and geochemical trends to other fluorite and base metal veins located in the Central Pyrenees. Veins occurring along such faults most likely represent channelways used by mineralizing solutions that were expelled from the basement. Previous work argued for genetic processes involving circulation of mineralising fluids during the Triassic–Lower Cretaceous period, which is often considered to represent a period of heat, fluid, and mass transfers related to rifting events in the western European basins, which is related to the opening of the Atlantic.A major goal of this study was to decipher the timing of fluid flow and ore formation on the basis of Nd–Sm dating of fluorite sampled from a number of deposits sharing a similar geological framework. No precise age(s) could be obtained due to a scatter in data, but results from the Portalet MVT-style deposit point to a mid-Triassic age (around 220 Ma) for this mineralization. The model that best explains the diagenetic stratabound mineralization at Portalet is gravity-driven fluid flow involving basinal brines during a rifting stage. Indeed, the formation of horst and graben structures during Early Alpine extensional tectonics favoured the infiltration of meteoric water into uplifted blocks, followed by fluid migration through the deeper parts of the basins whereby heat and dissolved components were acquired. This model also explains diagenetic changes recorded in the host limestone at Portalet. Also, overall Pb, Sr and Nd isotopic ratios measured in galena and fluorite suggest that differences in host rock and in the lithology of the basement seem to have exerted control on the chemistry of mineralizing fluids providing each deposit with distinctive characteristics.  相似文献   

20.
The Cameroon line comprises a 1600-km long Y-shaped chain of< 30 m.y. old volcanoes and <70 m.y. old plutons extendinginto mainland Africa from the Atlantic island of Pagalu. Thedistribution of basaltic volcanic centres is ideal for comparingsub-continental and sub-oceanic sources for basalts and forstudying the influence of the lithosphere on magma generation.We report Nd, Sr, Pb and O isotopic data for more than thirty(principally basaltic) samples from all the main volcanic centrestogether with data for two granulite facies xenoliths. Thosebasalts which display no obvious evidence of crustal contaminationyield initial 87Sr/86Sr ratios ranging from 0.7029 to 0.7035,Nd between +2 and +7 and 206Pb/204Pb between 19?0 and 20?6.The Nd and Sr isotopic compositions define a field on the lefthand side of the ‘mantle array’ (that is with relativelyunradiogenic Sr) and include some data which show overlap withcompositions observed for St. Helena. 208Pb/204Pb ratios extendto 40?4—amongst the more radiogenic observed for alkalibasalts. The Nd and Sr isotopic data are similar in oceanicand continental sectors indicating that the magmas are derivedfrom generally similar mantle sources. Despite this overallsimple picture, the source of the Cameroon line volcanics hasin fact been variable in both time and space. Pb is less radiogenicand Sr is more radiogenic in transitional to hypersthene-normativecompositions. There is a progression to more radiogenic leadisotopic compositions with time for the Cameroon line as a wholethat is most strikingly displayed in the 30 m.y. eruptive historyof Principe. These space-time data are difficult to reconcilewith conventional plume models or with some dispersed ‘plumpudding’ models. The heterogeneities require isolationtimes considerably longer than the age of the south Atlanticsea floor (120 Ma). The eruptive lavas with the most radiogenicPb observed (accompanied by unradiogenic Nd) precisely straddlethe continental edge (i.e. occur in both oceanic and continentalsectors) with no dependency on Nd and Pb concentrations. A modelis proposed which links these observations with the destructionof lithosphere, and the impregnation of the uppermost mantleby the St. Helena hot spot during the formation of the SouthAtlantic ocean. This mantle was subsequently melted to formthe Cameroon line which appears to be derived from a risinghot zone initiated by the early plume activity. The magmaticproducts reflect the mantle mixing that took place during continentalbreakup, the consequent cooling and thickening of the lithosphereand the continued interaction between rising plume componentsand this lithosphere. The depth from which magmas are currentlybeing tapped at the continent/ocean boundary is estimated atless that 150 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号