首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The extreme depletion of the Earth’s mantle in sulfur is commonly seen as a signature of metal segregation from Earth’s mantle to Earth’s core. However, in addition to S, the mantle contains other elements as volatile as S that are hardly depleted relative to the lithophile volatility trend although they are potentially as siderophile as sulfur. We report experiments in metal-sulfide–silicate systems to show that the CI normalized abundances of S, Pb, and Sn in Earth’s mantle cannot be reproduced by element partitioning in Fe ± S–silicate systems, neither at low nor at high pressure. Much of the volatile inventory of the Earth’s mantle must have been added late in the accretion history, when metal melt segregation to the core had become largely inactive. The great depletion in S is attributed to the selective segregation of a late sulfide matte from an oxidized and largely crystalline mantle. Apparently, the volatile abundances of Earth’s mantle are not in redox equilibrium with Earth’s core.  相似文献   

2.
The Moon: A Taylor perspective   总被引:1,自引:0,他引:1  
We address several current lunar problems. The data suggest that the Moon likely possesses an Fe-rich metallic core a few percent of lunar volume, although definitive proof is lacking. Refractory elements appear to be enriched relative both to the composition of the primordial solar nebula (CI) and the Earth. Very volatile elements appear to be depleted uniformly at high levels. We adopt the single-impact hypothesis for lunar origin, which formed a high-temperature silicate vapor disk, mostly of metal-poor silicate material from an impactor (Theia) that was already depleted in volatiles. We speculate that the curious lunar bulk-composition resulted from condensation from high-temperature vapor at around a few Earth radii. This could produce an enriched refractory-element composition that cut off below 1000 K, producing a uniform depletion in very volatile elements.  相似文献   

3.
The solubility of volatile compounds in magmas and the redox state of their mantle source are the main factors that control the transfer of volatile components from the planet’s interior to its surface. In theories of the formation of the Earth, the composition of gases extracted by primary planetary magmas is accounted for by the large-scale melting of the early mantle in the presence of the metallic Fe phase [1, 2]. The fused metallic Fe phase and the melted silicate material experienced gravitational migration that exerted influence upon the formation of the metallic core of the planet. The large-scale melting of the early Earth should have been accompanied by the formation of volatile compounds, whose composition was controlled by the interaction of H and C with silicate and metallic melts, a process that remains largely unknown as of yet.  相似文献   

4.
Composition of terrestrial planets records planetary accretion, core–mantle and crust–mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 × CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk's lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon-forming debris ring with mostly a proto-Earth's mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt (∼0.5% of the mass of the Earth's mantle). In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars’ rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable.  相似文献   

5.
The chemical equilibrium distribution of 69 elements between gas and melt is modeled for bulk silicate Earth (BSE) material over a wide P – T range (1000–4500 K, 10−6–102 bar). The upper pressure end of this range may occur during lunar formation in the aftermath of a Giant Impact on the proto-Earth. The lower pressures may occur during evaporation from molten silicates on achondritic parent bodies. The virial equation of state shows silicate vapor behaves ideally in the P - T range studied. The BSE melt is modeled as a non-ideal solution and the effects of different activity coefficients and ideal solution are studied. The results presented are 50% condensation temperatures, major gas species of each element, and the pressure and temperature dependent oxygen fugacity (fO2) of dry and wet BSE material. The dry BSE model has no water because it excludes hydrogen; it also excludes the volatile elements (C, N, F, Cl, Br, I, S, Se, Te). The wet BSE model has water because it includes hydrogen; it also includes the other volatiles. Some key conclusions include the following: (1) much higher condensation temperatures in silicate vapor than in solar composition gas at the same total pressure due to the higher metallicity and higher oxygen fugacity of silicate vapor (cf. Fegley et al. 2020), (2) a different condensation sequence in silicate vapor than in solar composition gas, (3) good agreement between different activity coefficient models except for the alkali elements, which show the largest differences between models, (4) agreement, where overlap exists, with prior published silicate vapor condensation calculations (e.g., Canup et al. 2015, Lock et al. 2018, Wang et al. 2019), (5) condensation of Re, Mo, W, Ru, Os oxides instead of metals over the entire P – T range, (6) a stability field for Ni-rich metal as reported by Lock et al. (2018), (7) agreement between ideal solution (from this work and from Lock et al. 2018) and real solution condensation temperatures for elements with minor deviations from ideality in the oxide melt, (8) similar 50% condensation temperatures, within a few degrees, in the dry and wet BSE models for the major elements Al, Ca, Fe, Mg, Si, and the minor elements Co, Cr, Li, Mn, Ti, V, and (9) much lower 50% condensation temperatures for elements such as B, Cu, K, Na, Pb, Rb, which form halide, hydroxide, sulfide, selenide, telluride and oxyhalide gases. The latter results are preliminary because the solubilities and activities of volatile elements in silicate melts are not well known, but must be considered for the correct equilibrium distribution, 50% condensation temperatures and mass balance of halide (F, Cl, Br, I), hydrogen, sulfur, selenium and tellurium bearing species between silicate melt and vapor.  相似文献   

6.
堆积的地球及其初始不均一性   总被引:14,自引:0,他引:14  
从天体化学和地球科学的研究成果出发,认为地球是在一较窄的类地行星区域内,主要由硅酸盐质星子随机吸积而成。在星子形成之前,初始太阳星云已经历了挥发性元素的强烈亏损事件,同时也已发生了硫化物、金属和硅酸盐成分之间的分馏作用,随着行星的形成,行星内部的分馏作用将会持续进行。在形成地球的独立吸积区内,混合作用不彻底,星子群之间的化学成分不均一,因此,构成地球的将是一套具有各自独立化学成分组成的星子群,而不同于地球上现已发现的任何陨石或者它们的组合。  相似文献   

7.
Oxygen fugacity (fO2) in the Earth’s mantle has a bearing on the problems of the chemical differentiation of the Earth’s materials and formation of the chemical and phase state of its shells. This paper addresses some problems concerning changes in the redox state of the upper mantle over geologic time and through its depth and the possible influence of fO2 stratification in the interiors on geochemical processes. Among these problems are the formation of fluids enriched in H2O, CO2, CH4,and H2; the possible influence of reduced fluid migration from mantle zones with low fO2 values on reactions in the lithosphere; and the formation of films of silicate liquids with high H2O and CO2 contents, which could be responsible for metasomatic transformations in rocks. The formation of a metallic core and accompanying large-scale melting of the silicate part of the Earth are the early mechanisms of the chemical differentiation of the mantle that must have had an effect on the redox state and the composition of volatile components in planetary materials. The molten metallic and silicate phases were prone to gravitational migration, which affected the formation of the metallic core. Volatile components had to be simultaneously formed in the zones of large-scale melting of the early Earth. The composition of these volatiles was largely controlled by the interaction of hydrogen and carbon, the two major gas-forming elements in the mantle, with melt under low fO2 values. A remarkable feature is that, despite fairly low fO2 values imposed by the presence of a metallic phase, both reduced (CH4 and H2) and oxidized species of hydrogen and carbon (H2O, OH? and CO 3 ?2 ) are stable in the melt. This peculiarity of carbon and hydrogen dissolution in reduced melts may be crucial for the elucidation of mechanisms for the formation of initial amounts of CO2 and H2O connected with incipient melting in the reduced mantle.  相似文献   

8.
受时空不可及性的制约,地质学家在探究地球深部物质组成方面仍显得很被动,尤其是在探究地幔物质组成方面显得更加艰难.目前,科学家们探测地幔物质主要依靠地球物理学和实验矿物学、岩石学方法相结合的手段来进行.结果表明,地幔过渡带主要的矿物组成有瓦士利石、林伍德石、超硅石榴子石以及少量的CaSiO3.下地幔主要矿物组成有钙钛矿(Pv)、后钙钛矿(PPv)和镁方铁矿(Mw).在讨论过渡带和下地幔物质组成的基础上,归纳总结了地球内部热源的三种来源,分别是放射性元素的衰变热和初始熔融硅酸盐地球长期冷却放出的热、核幔边界在地磁场和高电导率物质的作用下产生的热以及来自地核的热.这些结论对研究地球深部动力学和热力学过程有重要意义.  相似文献   

9.
The Dhofar 280 lunar highland meteorite is the first one in which native silicon was identified in association with iron silicides. This association is surrounded by silicate material enriched in Si, Na, K, and S and occurs within an impact-melt matrix. Compared to the meteorite matrix, the objects with native Si and the silicate material around them show high Al-normalized concentrations of volatile elements and/or elements with low sensitivity to oxygen but are not any significantly enriched in refractory lithophile elements. Some lithophile elements (V, U, Sm, Eu, and Yb) seem to be contained in reduced forms, and this predetermines REE proportions atypical of lunar rocks and a very low Th/U ratio. The admixture of siderophile elements (Ni, Co, Ge, and Sb) suggests that the Si-bearing objects were contaminated with meteorite material and were produced by the impact reworking of lunar rocks. The high concentrations of volatile elements suggest that the genesis of these objects could be related to the condensation of silicate vapor generated during meteorite impacts. The reduction of silicon and other elements could take place in an impact vapor cloud, with the subsequent condensation of these elements together with volatile components. On the other hand, condensates of silicate vapor could be reduced by impact reworking of impact breccias. Impact-induced vaporization and condensation seem not to play any significant role in forming the composition of the lunar crust, but the contents of the products of such processes can be locally relatively high. The greatest amounts of silicate vapor were generated during significant impact events. For example, more than 70% of the total mass of lunar material evaporated in the course of impact events should have resulted from the collision of the Moon with a cosmic body that produced the Moon??s largest South Pole-Aitken basin.  相似文献   

10.
The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to the concentrations of these elements in chondritic meteorites. The similar depletions have been used as evidence that the Moon inherited its mantle from the Earth after a giant impact event. We have conducted liquid metal-liquid silicate partitioning experiments for V, Cr, and Mn from 3 to 14 GPa and 1723 to 2573 K to understand the behavior of these elements during planetary core formation. Our experiments have included systematic studies of the effects of temperature, silicate composition, metallic S-content, metallic C-content, and pressure. Temperature has a significant effect on the partitioning of V, Cr, Mn, with all three elements increasing their partitioning into the metallic liquid with increasing temperature. In contrast, pressure is not observed to affect the partitioning behavior. The experimental results show the partitioning of Cr and Mn are hardly dependent on the silicate composition, whereas V partitions more strongly into depolymerized silicate melts. The addition of either S or C to the metallic liquid causes increased metal-silicate partition coefficients for all three elements. Parameterizing and applying the experimental data, we find that the Earth’s mantle depletions of V, Cr, and possibly Mn can be explained by core formation in a high-temperature magma ocean under oxygen fugacity conditions about two log units below the iron-wüstite buffer, though the depletion of Mn may be due entirely to its volatility. However, more oxidizing conditions proposed in recent core formation models for the Earth cannot account for any of the depletions. Additionally, because we observe no pressure effect on the partitioning behavior, the data do not require the mantle of the Moon to be derived from the Earth’s mantle, although this is not ruled out. All that is required to create depletions of V, Cr, and Mn in a mantle is a planetary body that is hot enough and reducing enough during its core formation. Such conditions could have existed on the Moon-forming impactor.  相似文献   

11.
The paper reports scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) data on three cryptocrystalline (CC) cosmic spherules of chondritic composition (Mg/Si ≈ 1) from two collections taken up at glaciers at the Novaya Zemlya and in the area of the Tunguska event. The spherules show “brickwork” microtextures formed by minute parallel olivine crystals set in glass of pyroxene–plagioclase composition. The bulk-rock silicate chemistry, microtexture, mineralogy, and the chemical composition of the olivine and the local chemistry of the glass in these spherules testify to a chondritic source of the spherules. The solidification of the spherules in the Earth’s atmosphere was proved to be a highly unequilibrated process. A metastable state of the material follows, for example, from the occurrence of numerous nanometer-sized SiO2 globules in the interstitial glass. These globules were formed by liquid immiscibility in the pyroxene–SiO2 system. Troilite FeS and schreibersite (Fe,Ni)3P globules were found in the FeNi metal in one of the spherules, which suggests that the precursor was not chemically modified when melted in the Earth’s atmosphere. Our results allowed us to estimate the mineralogy of the precursor material and correlate the CC spherules with the chondrule material of chondrites. The bulk compositions of the spherules are closely similar to those of type-IIA chondrules.  相似文献   

12.
Exsolution (unmixing) of the volatile element-rich phases from cooling and crystallising silicate magmas is critical for element transport from the Earth’s interior into the atmosphere, hydrosphere, crustal hydrothermal systems, and the formation of orthomagmatic ore deposits. Unmixing is an inherently fugitive phenomenon and melt inclusions (droplets of melt trapped by minerals) provide robust evidence of this process. In this study, melt inclusions in phenocrystic and miarolitic quartz were studied to better understand immiscibility in the final stages of cooling of, and volatile exsolution from, granitic magmas, using the tin-bearing Omsukchan Granite (NE Russia) as an example.

Primary magmatic inclusions in quartz phenocrysts demonstrate the coexistence of silicate melt and magma-derived Cl-rich fluids (brine and vapour), and emulsions of these, during crystallisation of the granite magma. Microthermometric experiments, in conjunction with PIXE and other analytical techniques, disclose extreme heterogeneity in the composition of the non-silicate phases, even in fluid globules within the same silicate melt inclusion. We suggest that the observed variability is a consequence of strong chemical heterogeneity in the residual silicate-melt/brine/vapour system on a local scale, owing to crystallisation, immiscibility and failure of individual phases to re-equilibrate. The possible evolution of non-silicate volatile magmatic phases into more typical “hydrothermal” chloride solutions was examined using inclusions in quartz from associated miarolitic cavities.  相似文献   


13.
The exsolution of magmatic hydrosaline chloride liquids   总被引:14,自引:0,他引:14  
Jim D. Webster   《Chemical Geology》2004,210(1-4):33-48
Hydrosaline liquid represents the most Cl-enriched volatile phase that occurs in magmas, and the exsolution of this phase has important consequences for processes of hydrothermal mineralization and for volcanic emission of Cl to the atmosphere. To understand the exsolution of hydrosaline liquids in felsic to mafic magmas, the volatile abundances and (Cl/H2O) ratios of more than 1000 silicate melt inclusions (MI) have been compared with predicted and experimentally determined solubilities of Cl and H2O and associated (Cl/H2O) ratios of silicate melts that were saturated in hydrosaline chloride liquid with or without aqueous vapor in hydrothermal experiments. This approach identifies the minimum volatile contents and the values of (Cl/H2O) at which a hydrosaline chloride liquid exsolves from any CO2- or SO2-poor silicate melt. Chlorine solubility is a strong function of melt composition, so it follows that Cl solubility in magmas varies with melt evolution. Computations show that the (Cl/H2O) ratio of residual melt in evolving silicate magmas either remains constant or increases to a small extent with fractional crystallization. Consequently, the initial (Cl/H2O) in melt that is established early during partial melting has important consequences for the exsolution of vapor, vapor plus hydrosaline liquid, or hydrosaline liquid later during the final stages of melt ascent, emplacement, and crystallization or eruption. It is demonstrated that the melt (Cl/H2O) controls the type of volatile phase that exsolves, whereas the volatile abundances in melt control the relative timing of volatile phase exsolution (i.e., the time of earliest volatile exsolution relative to the rate of magma ascent and crystallization history).

Comparing melt inclusion compositions with experimentally determined (Cl/H2O) ratios and corresponding volatile solubilities of hydrosaline liquid-saturated silicate melts suggests that some fractions of the eruptive, calc-alkaline dacitic magmas of the Bonnin and Izu arcs should have saturated in and exsolved hydrosaline liquid at pressures of 2000 bars. Application of these same melt inclusion data to the predicted volatile solubilities of Cu-, Au-, and Mo-mineralized, calc-alkaline porphyritic magmas suggests that the chemical evolution of dioritic magmas to more-evolved quartz monzonite compositions involves a dramatic reduction in Cl solubility that increases the probability of hydrosaline liquid exsolution. The prediction that quartz monzonite magmas should exsolve a hydrosaline chloride liquid, that is potentially mineralizing, is consistent with the general observation of metal-enriched, hypersaline fluid inclusions in the more felsic plutons of numerous porphyry copper systems. Moreover, comparing the volatile contents of melt inclusions from the potassic, alkaline magmas of Mt. Somma-Vesuvius with the predicted (Cl/H2O) ratios of hydrosaline liquid-saturated melts having compositions similar to those of the volatile-rich, alkaline magmas associated with the orthomagmatic gold–tellurium deposits of Cripple Creek, Colorado, suggests that hydrosaline chloride liquid should have exsolved at Cripple Creek as the magmas evolved to phonolite compositions. This prediction is consistent with the well-documented role of Cl-enriched, mineralizing hydrothermal fluids at this major gold-mining district.  相似文献   


14.
This paper reviews the results of investigations of melt inclusions in minerals of carbonatites and spatially associated silicate rocks genetically related to various deep-seated undersaturated silicate magmas of alkaline ultrabasic, alkaline basic, lamproitic, and kimberlitic compositions. The analysis of this direct genetic information showed that all the deep magmas are inherently enriched in volatile components, the most abundant among which are carbon dioxide, alkalis, halides, sulfur, and phosphorus. The volatiles probably initially served as agents of mantle metasomatism and promoted melting in deep magma sources. The derived magmas became enriched in carbon dioxide, alkalis, and other volatile components owing to the crystallization and fractionation of early high-magnesium minerals and gradually acquired the characteristics of carbonated silicate liquids. When critical compositional parameters were reached, the accumulated volatiles catalyzed immiscibility, the magmas became heterogeneous, and two-phase carbonate-silicate liquid immiscibility occurred at temperatures of ≥1280–1250°C. The immiscibility was accompanied by the partitioning of elements: the major portion of fluid components partitioned together with Ca into the carbonate-salt fraction (parental carbonatite melt), and the silicate melt was correspondingly depleted in these components and became more silicic. After spatial separation, the silicate and carbonate-silicate melts evolved independently during slow cooling. Differentiation and fractionation were characteristic of silicate melts. The carbonatite melts became again heterogeneous within the temperature range from 1200 to 800–600°C and separated into immiscible carbonate-salt fractions of various compositions: alkali-sulfate, alkali-phosphate, alkali-fluoride, alkali-chloride, and Fe-Mg-Ca carbonate. In large scale systems, polyphase silicate-carbonate-salt liquid immiscibility is usually manifested during the slow cooling and prolonged evolution of deeply derived melts in the Earth’s crust. It may lead to the formation of various types of intrusive carbonatites: widespread calcite-dolomite and rare alkali-sulfate, alkali-phosphate, and alkali-halide rocks. The initial alkaline carbonatite melts can retain their compositions enriched in P, S, Cl, and F only at rapid eruption followed by instantaneous quenching.  相似文献   

15.

The first results are presented for the synthesis of diamond at 6.5 GPa and 1600°C during migration of molten iron through a silicate matrix, which is composed of olivine crystals with interstitial graphite. The experiment shows that diamonds in the Earth’s mantle and the terrestrial planets could have formed during differentiation. Diamond crystals, which were formed during iron segregation of the Earth’s differentiation, could be centers for further crystallization of mantle diamonds.

  相似文献   

16.
Xenon in the atmospheres of the Earth and Mars is characterized by a low abundance compared to other noble gases and by a depletion in light isotopes. By means of combined chemical analysis, in situ X-ray diffraction and Raman spectroscopy, we propose that Xe reacts with olivine at the high pressures and temperatures found in the upper mantle and in pre-terrestrial bodies. That provides a mechanism for the incorporation of Xe at depth and consequent isotopic fractionation. The substitution mechanism of Xe to Si depends on the type of silicate framework, forming XeO2 molecules in fully polymerized phases of silica, and XeO4 molecules in the isolated tetrahedra structure of olivine. Consequently, Xe retention in (Mg,Fe)2SiO4 olivine is less thermodynamically favored than in SiO2, implying lesser amounts of Xe trapped in olivine. This chemistry does not extend to the lighter noble gas Ar in the investigated pressure range. The incorporation of both Xe and Ar in olivine is correlated to its trace element content likely through the formation of vacancies, a pre-requisite for the retention of Xe on tetrahedral sites and Ar on octahedral sites.  相似文献   

17.
Stress affects chemical processes on all scales in the Earth but the magnitude of its effect is debated. Here, I give a new synthesis of the theory that describes the effects of stress on chemistry, elaborating upon work in Materials Science which is built from fundamental thermodynamic laws, and show its significance in Earth Science. There are separate but compatible relationships describing what happens (1) at interfaces and (2) within grains. (1) The main chemical effects of stress in the Earth are due to variations in normal stress along grain interfaces and between interfaces with different orientations. For reactions involving diffusion these variations give effects on mineral stability broadly equivalent to pressure changes of (molar volume)/(molar volume change during reaction) × (stress variation). The volume ratio is generally large and so the effects of normal stress variations are always important since all stressed rocks have interfaces supporting different normal stresses. There is no global chemical equilibrium in a stressed system, so reaction kinetics contribute to ongoing evolution until stresses relax: this evolution can include deformation by diffusion creep and pressure solution, possibly with new mineral growth. These effects are relevant for predicting the conditions for reactions involving fluids, such as serpentinite formation and breakdown (relevant for the Earth's volatile cycles) and for other reactions such as ringwoodite breakdown (relevant for understanding the 660 km mantle discontinuity). (2) Within stressed solid solution grains it is not possible to define chemical potentials of all chemical components since one has to be specified as “immobile.” The chemical potential of a “mobile” component such as an exchange vector can be defined. It depends on the “partial molar strain,” a second rank tensor defining the variation in unit cell geometry with composition. In cubic crystals the partial molar strain is isotropic and the chemical potential of a mobile component depends on mean stress. In other crystal systems the partial molar strain is anisotropic and the chemical potential depends on a “weighted” mean stress; orientation as well as magnitude of stress has an influence. I propose “chemical palaeopiezometry”—the possibility of measuring past stress levels via chemistry. Examples show that stress variations in hundreds of MPa to GPa are required to produce 2% variations in composition but high stresses and/or precise chemical analyses will allow this proposal to be tested. High stresses around inclusions and dislocations could be targeted. So, the weighted mean stress inside grains has an effect which is relatively minor although potentially valuable in explaining chemical variations; the normal stress at interfaces plays the main role in chemical processes and its effects are of significant magnitude.  相似文献   

18.
The paper is focused on the fundamental problem of influence of extraterrestrial factors on the Earth’s geologic and tectonic evolution. Extraterrestrial factors played a decisive role in the Earth’s genesis, the formation of the first Hadean continental crust, and the beginning of the Archean era. Their significant influence persisted in the later epochs: Even in the Phanerozoic, extraterrestrial factors might have had a considerable influence on the environment. The sialic cores of protocontinental crust (4.4-3.9 Ga) with first-generation greenstone zones (3.8-3.2 Ga) and the global system of granite-greenstone belts (3.1-2.7 Ga) formed in the rotation-plume regime, mainly in the subequatorial hot belt. The formation of these global structures was, to a large extent, influenced by asteroid impacts, which caused the impact-triggered genesis of mantle plumes. Dramatic changes in the subsequent geologic history began at 2.7-2.0 Ga; at 2.0 Ga they terminated with the Moon’s transition to an orbit similar to the present-day one (50 ± 3 Earth’s radii), accompanied by the abrupt slowdown of the Earth’s axial rotation, the termination of formation of the layer D", and the start of recent plate tectonics, which is accompanied by the plume tectonics.  相似文献   

19.
硅酸盐岩风化对气候变化和构造运动的反馈对长尺度气候变化可能起到重要的调节作用,对该反馈过程的定量认识有助于更确切理解地球碳循环的运行规律。通常认为风化类型可分为两种,分别是供应限制和动力学限制。全球变暖可能促进了动力学限制流域的化学风化作用,然而,关于这方面的认识仍很有限。育空河流域是典型的动力学限制风化区域,研究育空河的风化对气候变暖的响应有助于深入认识气候和大陆风化之间的相互作用。正演模型是区分河流风化端元的重要手段,文章利用正演模型对育空河流域从1975年到2019年的主要离子组成的数据集进行分析,并获得了该流域在过去几十年的化学风化速率的变化趋势。结果表明,育空河水化学性质主要受到碳酸盐岩风化和硅酸盐岩风化控制,两者多年平均碳汇通量分别为2.1×1011 mol/yr和4.1×1010 mol/yr,处于世界主要大河碳汇通量的中间水平。更重要的是,在同一时期,伴随着2.2℃的温度增幅和13.7%的径流量增加,流域内的阳离子总通量增加了35.7%,其中硅酸盐岩和碳酸盐岩风化产生的阳离子通量分别增加了41%和35%,阳离子通量/风化速率对气候的敏感性与冰岛地区的研究结果符合的很好,与风化速率加快相对应的,硅酸盐岩风化碳汇通量相对增加了59.6%。尽管碳汇的增加在绝对通量上相比人类化石燃烧产生的碳排放通量微不足道,但是考虑到构造尺度内全球硅酸盐岩风化速率的增强,尤其是在较为寒冷的高纬度地区,额外的二氧化碳固定量可能对地球历史时期的全球气候产生重要影响。  相似文献   

20.
高温高压实验作为地球科学研究的重要方向之一,通过模拟地球深部的温度和压力条件,了解地球深部物质的物理化学性质、地球内部结构和动力学演化。角闪石属于双链硅酸盐矿物,为地幔岩石圈的重要组成,广泛分布在海洋地壳、俯冲板块、变质岩和火成岩中。作为俯冲带的重要含水矿物,角闪石的广泛分布和高温高压下的脱水对于理解俯冲带水含量以及水迁移具有重要作用,同时在俯冲带的地震活动、高电导率异常、地震波速异常和岩浆活动中扮演重要角色。在过去的近百年时间里,国内外学者对角闪石高温高压物理化学性质进行了大量的研究。角闪石具有非常复杂的元素组成和结构特征,由此也导致了不同角闪石物理化学性质存在显著不同,包括脱水与脱羟基反应中元素迁移的差异、角闪石形成与分解过程中碱性元素(K+Na)和H2O含量对热稳定的影响、不同空间群结构下的高压结构相变、原位条件下不同结晶方向的电导率异常、不同结晶学优选方位(CPO)下的波速异常等。已有的研究对于角闪石的物理化学性质以及其在俯冲带中发挥的作用有了比较清楚的认识,但仍然有许多问题需要进一步研究,如角闪石的高压脱水动力学、热物性和变形机制等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号