首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary garnet (pyrope-almandine)-omphacite (Cpx 1, 6.5–7 wt% Na2O)-sulfide (Fe-Ni-Co mss) assemblage of the two diamondiferous eclogite xenoliths studied (U33/1 and UX/1) experienced two mantle metasomatic events. The metasomatic event I is recorded by the formation of platy phlogopite (~ 10 wt% K2O), prior to incorporation of the xenoliths in the kimberlite. The bulk of the metasomatic alteration, consisting of spongy-textured clinopyroxene (Cpx 2A, 1–3 wt% Na2O), coarser-grained clinopyroxene (Cpx 2B, 2–5 wt% Na2O), pargasitic amphibole (~ 0.8 wt% K2O; 3–3.5 wt% Na2O), kelyphite (Cpx 3, mostly <1 wt% Na2O; and zoned Mg-Fe-Al spinel), sodalite, calcite, K-feldspar, djerfisherite (K5.95Na0.02Fe18.72Ni2.36Co0.01Cu4.08S26Cl ) and a small amount of K-Ca-Fe-Mg glass, is ascribed to the metasomatic event II that occurred also in the upper mantle, but after the xenoliths were incorporated in the kimberlite. A pervasive chloritic alteration (mainly clinochlore + magnetite) that overprints earlier assemblages probably took place in the upper crustal environment. The diamonds are invariably associated with secondary clinopyroxene and chlorite, but the diamonds formed before the entrainment of the xenoliths in the Udachnaya kimberlite.Editorial Responsibility: T.L. Grove  相似文献   

2.
3.
Bulk compositions and mineral analyses for forty-one, large, garnet- and spinel-facies peridotite xenoliths from the Udachnaya kimberlite in the central Siberian platform have many similarities to those of well-studied peridotites from the Kaapvaal craton in southern Africa. Coarse Mg-rich lherzolites and harzburgites with equilibration temperatures below 1000 °C are abundant and are believed to form the principal rock type in the Siberian lithosphere. The low-temperature Udachnaya peridotites have an average mg number [Mg/(Mg+Fe)] of 92.6 with a wide dispersion in modal enstatite, ranging to over 40 wt%. High-temperature peridotites are relatively richer in Fe and Ti and are commonly deformed, with porphyroclastic or mosaic-porphyroclastic textures, some of the latter having fluidized enstatite. The Udachnaya peridotites have experienced late-stage metasomatism before, during and after eruption. Garnets and pyroxenes in many of the high-temperature rocks are zoned, probably by reaction with melt prior to eruption. Virtually all the peridotites contain secondary diopside, inhomogeneous on a micron scale, that mantles primary orthopyroxene. It is believed to have crystallized along with lesser amounts of intergranular calcite and monticellite during eruption. Bulk analyses for total Fe in many specimens are higher than whole-rock Fe calculated from the electron probe analyses and the modes. The magnitude of the difference between the two measurements of total Fe correlates with loss-on-ignition, suggesting that Fe has been introduced during serpentinization following eruption. These late metasomatic processes have thus affected some major as well minor and trace element compositions. The similarities in bulk composition of peridotites from Udachnaya and the Kaapvaal are evidence of a common origin. Low-temperature cratonic peridotites differ from oceanic peridotites in having higher mg numbers (>92) and in having relatively high but wide-ranging modal enstatite (Mg/Si = 1.06–1.49 weight fraction). The Udachnaya low-temperature peridotites have an inverse correlation between FeO (calculated from the probe analyses and modes) and SiO2. This correlation is also present in the Kaapvaal data but is complicated by a greater range in fertility that produces a positive variation of Fe with Si. A negative trend for Fe/Si can be seen within a portion of the Kaapvaal data, that for low-Ca harzburgites, in which the variation in fertility is restricted. The negative trends for Fe/Si can be interpreted as a consequence of either segregation of olivine and orthopyroxene by metamorphic differentiation or partial sorting during cumulate formation. Received: 18 June 1996  / Accepted: 11 February 1997  相似文献   

4.
Oxygen fugacity (fO2) affects melting, metasomatism, speciation of C–O–H fluids and carbon-rich phases in the upper mantle. fO2 of deep off-craton mantle is poorly known because garnet-peridotite xenoliths are rare in alkali basalts. We examine the redox and thermal state of the lithospheric mantle between the Siberian and North China cratons using new Fe3+/ΣFe ratios in garnet and spinel obtained by M?ssbauer spectroscopy, major element data and PT estimates for 22 peridotite xenoliths as well as published data for 15 xenoliths from Vitim, Russia. Shallow spinel-facies mantle is more oxidized than deep garnet peridotites (average, ?0.1 vs. ?2.5 ΔlogfO2(FMQ)). For intermediate garnet–spinel peridotites, fO2 estimates from spinel-based oxybarometers are 1.5–3.2 ΔlogfO2(FMQ) lower than those from garnet-based oxybarometers. These rocks may be out of phase and chemical inter-mineral equilibrium because the spinel–garnet reaction and concomitant changes in mineral chemistry do not keep up with PT changes (e.g., lithospheric heating by recent volcanism) due to slow diffusion of trivalent cations and because gar-, gar-spl and spl-facies rocks may coexist on centimeter–meter scale. The spinel-based fO2 estimates may not be correct while garnet-based fO2 values provide conditions before the heating. The T (780–1,100?°C) and fO2 ranges of the Vitim xenoliths overlap those of coarse garnet and spinel cratonic peridotites. However, because of a higher geothermal gradient, the deepest Vitim garnet peridotites are more reduced (by 0.5–2.0 ΔlogfO2(FMQ)) than cratonic garnet peridotites at similar depths, and the “water maximum” conditions (>80?% H2O) in the off-craton mantle exist in a more shallow and narrow depth range (60–85?km) than in cratonic roots (100–170?km). The base of the off-craton lithospheric mantle (≥90?km) at 2.5?GPa and 1,150?°C has fO2 of ?3.0 ?logfO2(FMQ), with dominant CH4 and H2O and minor H2 in the fluid. Melting near the base of off-craton mantle lithosphere may be induced by increasing water share in migrating fluids due to oxidation of methane.  相似文献   

5.
6.
Lower crustal garnet-bearing mafic granulite xenoliths from beneath the cratonic areas of NE Europe (NW Russia, Belarus, Finland) have unradiogenic 143Nd/144Nd ratios that differ strongly from those of xenoliths from beneath Phanerozoic regions of the European plate and worldwide, but closely resemble xenoliths from other cratonic regions of the world. Phanerozoic lower crustal xenoliths worldwide also show a very limited range of Pb isotope compositions whereas most cratonic lower crustal xenoliths have more varied but usually unradiogenic Pb isotope compositions, plotting to the left of the Geochron. However, many of the xenoliths from beneath NE Europe plot on the right-hand side of the Geochron and also have more radiogenic 208Pb/204Pb ratios. Thus, the lower crust of NE Europe shows characteristics of both cratonic lower crust (unradiogenic Nd isotopes) and Phanerozoic lower crust (radiogenic Pb isotopes). Its present-day low U/Pb and Th/Pb ratios indicate that it has been depleted in heat-producing elements, but the radiogenic Pb isotope ratios show that this depletion occurred relatively recently.  相似文献   

7.
Summary Ultramafic and mafic xenoliths in Ordovician Agardag alkaline basalt dikes from the Sangilen Plateau, southeastern Siberia, provide samples from the upper mantle and crust beneath central Asia. Three major groups were distinguished among the xenoliths: Group I xenoliths are spinel lherzolites, Group II xenoliths are spinel-garnet clinopyroxenites, and Group III comprises gabbroic xenoliths with two subgroups: Group IIIa comprises garnet bearing gabbroids and Group IIIb is represented by garnet-free gabbroids. The spinel lherzolite xenoliths represent the uppermost lithospheric mantle beneath the Sangilen Plateau and have geochemical characteristics similar to those of primitive mantle. Spinel-garnet clinopyroxenite and gabbroic xenoliths are of igneous origin and represent fragments of intrusive bodies crystallized at depths close to the mantle-crust boundary, as well as in the lower and the upper crust. The gabbroic xenoliths are evidently the crystallization products of melts similar in major and trace element composition to parental magma of the Bashkymugur gabbronorite-monzodiorite intrusion. Gabbroic xenoliths from the Ordovician Agardag alkaline basalt dikes demonstrate the presence of intermediate magmatic chambers within the crust beneath the Sangilen Plateau during the Early Palaeozoic. The relatively high equilibration temperatures of the mantle and lower crust xenoliths in the Agardag alkaline basalt dikes are largely attributable to a plume occurring beneath the Sangilen Plateau during the Ordovician.  相似文献   

8.
9.
10.
11.
B. Carter Hearn Jr.   《Lithos》2004,77(1-4):473-491
The Homestead kimberlite was emplaced in lower Cretaceous marine shale and siltstone in the Grassrange area of central Montana. The Grassrange area includes aillikite, alnoite, carbonatite, kimberlite, and monchiquite and is situated within the Archean Wyoming craton. The kimberlite contains 25–30 modal% olivine as xenocrysts and phenocrysts in a matrix of phlogopite, monticellite, diopside, serpentine, chlorite, hydrous Ca–Al–Na silicates, perovskite, and spinel. The rock is kimberlite based on mineralogy, the presence of atoll-textured groundmass spinels, and kimberlitic core-rim zoning of groundmass spinels and groundmass phlogopites.

Garnet xenocrysts are mainly Cr-pyropes, of which 2–12% are G10 compositions, crustal almandines are rare and eclogitic garnets are absent. Spinel xenocrysts have MgO and Cr2O3 contents ranging into the diamond inclusion field. Mg-ilmenite xenocrysts contain 7–11 wt.% MgO and 0.8–1.9 wt.% Cr2O3, with (Fe+3/Fetot) from 0.17–0.31. Olivine is the only obvious megacryst mineral present. One microdiamond was recovered from caustic fusion of a 45-kg sample.

Upper-mantle xenoliths up to 70 cm size are abundant and are some of the largest known garnet peridotite xenoliths in North America. The xenolith suite is dominated by dunites, and harzburgites containing garnet and/or spinel. Granulites are rare and eclogites are absent. Among 153 xenoliths, 7% are lherzolites, 61% are harzburgites, 31% are dunites, and 1% are orthopyroxenites. Three of 30 peridotite xenoliths that were analysed are low-Ca garnet–spinel harzburgites containing G10 garnets. Xenolith textures are mainly coarse granular, and only 5% are porphyroclastic.

Xenolith modal mineralogy and mineral compositions indicate ancient major-element depletion as observed in other Wyoming craton xenolith assemblages, followed by younger enrichment events evidenced by tectonized or undeformed veins of orthopyroxenite, clinopyroxenite, websterite, and the presence of phlogopite-bearing veins and disseminated phlogopite. Phlogopite-bearing veins may represent kimberlite-related addition and/or earlier K-metasomatism.

Xenolith thermobarometry using published two-pyroxene and Al-in-opx methods suggest that garnet–spinel peridotites are derived from 1180 to 1390 °C and 3.6 to 4.7 GPa, close to the diamond–graphite boundary and above a 38 mW/m2 shield geotherm. Low-Ca garnet–spinel harzburgites with G10 garnets fall in about the same T and P range. Most spinel peridotites with assumed 2.0 GPa pressure are in the same T range, possibly indicating heating of the shallow mantle. Four of 79 Cr diopside xenocrysts have PT estimates in the diamond stability field using published single-pyroxene PT calculation methods.  相似文献   


12.
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.  相似文献   

13.
Alpine‐type orogenic garnet‐bearing peridotites, associated with quartzo‐feldspathic gneisses of a 140–115 Ma high‐pressure/ultra‐high‐pressure metamorphic (HP‐UHPM) terrane, occur in two regions of the Indonesian island of Sulawesi. Both exposures are located within NW–SE‐trending strike–slip fault zones. Garnet lherzolite occurs as <10 m wide fault slices juxtaposed against Miocene granite in the left‐lateral Palu‐Koro (P‐K) fault valley, and as 10–30 m wide, fault‐bounded outcrops juxtaposed against gabbros and peridotites of the East Sulawesi ophiolite within the right‐lateral Ampana fault in the Bongka river (BR) valley. Six evolutionary stages of recrystallization can be recognized in the peridotites from both localities. Stage I, the precursor spinel lherzolite assemblage, is characterized by Ol+Cpx+Opx±Prg‐Amp ± Spl±Rt±Phl, as inclusions within garnet cores. Stage II, the main garnet lherzolite assemblage, consists of coarse‐grained Ol+Opx+Cpx+Grt; whereas finer‐grained, neoblastic Ol+Opx+Grt+Cpx±Spl±Prg‐Amp±Phl constitutes stage III. Stages IV and V are manifest as kelyphites of fibrous Opx+Cpx+Spl in inner coronas, and Opx+Spl+Prg‐Amp±Ep in outer coronas around garnet, respectively. The final (greenschist facies) retrogressive stage VI is accompanied by recrystallization of Serp+Chl±Mag±Tr±Ni sulphides±Tlc±Cal. P–T conditions of the hydrated precursor spinel lherzolite stage I were probably about 750 °C at 15–20 kbar. P–T determinations of the peak stage IIc (from core compositions) display considerable variation for samples derived from different outcrops, with clustering at 26–38 kbar, 1025–1210 °C (P‐K & BR); 19–21 kbar, 1070–1090 °C (P‐K), and 40–48 kbar, 1205–1290 °C (BR). Stage IIr (derived from rim compositions) generally records decompression of around 4–12 kbar accompanied by cooling of 50–240 °C from the IIc peak stage. Stage III, which post‐dates a phase of ductile deformation, yielded 22±2 kbar at 750±25 °C (P‐K) and 16±2 kbar at 730±40 °C (BR). The granulite–amphibolite–greenschist decompression sequence reflects uplift to upper crustal levels from conditions of 647–862 °C at P=15 kbar (stage IV), through 580–635 °C at P=10–12 kbar (stage V) to 350–400 °C at P=4–7 kbar (stage VI), respectively, and is identical to the sequence recorded in associated granulite, gneiss and eclogite. Sulawesi garnet peridotites are interpreted to represent minor components of the extensive HP‐UHP (peak P >28 kbar, peak T of c. 760 °C) metamorphic basement terrane, which was recrystallized and uplifted in a N‐dipping continental collision zone at the southern Sundaland margin in the mid‐Cretaceous. The low‐T , low‐P and metasomatized spinel lherzolite precursor to the garnet lherzolite probably represents mantle wedge rocks that were dragged down parallel to the slab–wedge interface in a subduction/collision zone by induced corner flow. Ductile tectonic incorporation into the underthrust continental crust from various depths along the interface probably occurred during the exhumation stage, and the garnet peridotites were subsequently uplifted within the HP‐UHPM nappe, suffering a similar decompression history to that experienced by the regional schists and gneisses. Final exhumation from upper crustal levels was clearly facilitated by entrainment in Neogene granitic plutons, and/or Oligocene trans‐tension in deep‐seated strike–slip fault zones.  相似文献   

14.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

15.
16.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

17.
Summary Xenoliths of harzburgite, lherzolite, dunite and wehrlite (= Group I rocks) in lamprophyre dikes from Shingu are accompanied by large amounts of ultramafic-mafic xeno liths with Al- and Ti-rich clinopyroxene and/or kaersuite (websterite, clinopyroxenite, kaersutite rock, gabbro and anorthosite) (= Group II rocks). The latter rocks often crosscut the Group I rocks as veinlets, indicating that Group II rocks are younger. Although harzburgites and lherzolite from Shingu have ordinary modal compositions, the constituent minerals have extraordinary chemical characteristics; low Mg and Cr and high Ti, Al and Fe3+. Fo values of olivine range from 91 to 77. Cr/(Cr + Al) atomic ratios of spinel are lower than 0.5 even in harzburgites. Fe3+/(Cr+Al+Fe3+) atomic ratios of spinel are sometimes over 0.1. TiO2 contents of clinopyroxene often exceed 0.5 wt%. These characteristics are revealed when Group I rocks are veined or selvaged by Group 11 rocks; chemical compositions of minerals in peridotites systematically change forwards the latter. This strongly suggests that injections of melts with alkali basaltic affinity which had precipitated Group 11 rocks resulted in diffusion metasomatism on the Group I rocks.It is likely that the metasomatized peridotites are widespread underneath the areas where alkali basalt magmatism had fluorished, such as southwestern Japan. Some of Fe-rich lherzolite and harzburgite xenoliths reported in the literature are possibly metasomatites.
Petrologie von Peridotit-Xenolithen in Lamprophyren von Shingu, Südwest-Japan: Hinweise auf die Herkunft Fe-reicher Mantel-Peridotite
Zusammenfassung In lamprophyrischen Gängen von Shingu kommen Xenolithe von Harzburgit, Lherzolith, Dunit and Wehrlit (= Gesteinsgruppe I) vor. Sie werden von einer Vielzahl von ultramaf-isch-mafischen Xenolithen mit Al- and Ti-reichem Klinopyroxen and/oder Kaersutit (Websterit, Klinopyroxenit, Kaersutit-Gestein, Gabbro and Anorthosit) (=Gesteinsgruppe II) begleitet, die die Xenolithe der Gruppe I häufig gangförmig durchkreuzen, was auf ein jü ngeres Alter der Gesteinsgruppe II hinweist. Obwohl die Harzburgite and Lherzolithe von Shingu übliche modale Mineralbestände aufweisen, sind die Mineralchemismen außergewöhnlich: Niedrige Mg- and Cr- and hohe Ti-, Al- and Fe3+-Gehalte. Die Fo-Gehalte von Olivin reichen von 91 bis 77. Die Cr/(Cr+Al)-Atom-Verhältnisse der Spinelle sind kleiner als 0,5, sogar in den Harzburgiten; die Fe3+/(Cr+Al+Fe3+)-Atom-Verhaltnisse teilweise größer als 0,1. Der TiO2-Gehalt im Klinopyroxen ist meist über 0,5 Gew.%. Diese Charakteristika zeigen sich dort, wo die Gesteinsgruppe II die Gesteinsgruppe I durchschlägt oder kontaktiert. Der Mineralchemismus in den Peridotiten ändert sich dabei systematisch. Es wird vermutet, daß Schmelzinjektionen mit alkali-basaltischer Affinität, von denen die Gesteinsgruppe II herstammt, eine Diffusions-Metasomatose der Gesteinsgruppe I verursacht hat.Es wird angenommen, daß metasomatisierte Peridotite an der Basis von alkali-basaltischem Magmatismus weft verbreitet sind, wie zum Beispiel in Südwest-Japan. Einige in der Literatur aufscheinende Fe-reiche Lherzolith- and Harzburgit-Xenolithe sind möglicherweise metasomatisch entstanden.


With 6 Figures  相似文献   

18.
It has been found that the origin of the Patom Crater is related to endogenous processes with the main role played by deep flow of fluid components, which determine formation of the ejecta cone at about 500 years ago or more. This is evidenced by the zonal structure of the crater and geochemical peculiarities of rocks, caused by the long formation time for particular zones. Sandstone and schist blocks that were included into eruptive breccia within the crater were affected by gaseous or fluid components and intensively carbonized. During carbonatization, these rocks within the crater were being enriched in Ca and Sr, but the shares of the 87Sr and, consequently, 87Sr/86Sr ratio in them abruptly decrease. This is explained by the influence of deep fluids on terrigenous rocks, which were initially depleted in the radiogenic strontium isotope and might flow from a magmatic source with a low 87Sr/86Sr ratio. However, these fluids were enriched in CO2 and transported significant quantities of Sr, which led to enrichment of all terrigenous rocks in the crater in this element. The discovery of individual sandstone blocks with high concentrations of summarized rare earth elements (up to 557 g/t) and higher Sr and Ba contents among the fragments of host stratum within the Patom Crater allows us to suppose that there is a magmatic source enriched in fluid components at depths. The effect of the active fluid phase with low strontium isotopic ratios on rocks during the Patom Crater formation might lead to an abrupt decrease in values of the initial 87Sr/86Sr ratio in carbonized sandstones and schists.  相似文献   

19.
A.G. Dessai  A. Markwick  H. Downes 《Lithos》2004,78(3):263-290
Granulite and pyroxenite xenoliths in lamprophyre dykes intruded during the waning stage of Deccan Trap volcanism are derived from the lower crust beneath the Dharwar craton of Western India. The xenolith suite consists of plagioclase-poor mafic granulites (55% of the total volume of xenoliths), plagioclase-rich felsic granulites (25%), and ultramafic pyroxenites and websterites (20%) with subordinate wehrlites. Rare spinel peridotite xenoliths are also present, representing mantle lithosphere. The high Mg #, low SiO2/Al2O3 and low Nb/La (<1) ratios suggest that the protoliths of the mafic granulites broadly represent cumulates of sub-alkaline magmas. All of the granulites are peraluminous and light rare-earth element-enriched. The felsic granulites may have resulted from anatexis of the mafic lower crustal rocks; thus, the mafic granulites are enriched in Sr whereas the felsic ones are depleted. Composite xenoliths consisting of mafic granulites traversed by veins of pyroxenite indicate intrusion of the granulitic lower crust by younger pyroxenites. Petrography and geochemistry of the latter (e.g. presence of phlogopite) indicate the metasomatised nature of the deep crust in this region.Thermobarometric estimates from phase equilibria indicate equilibration conditions between 650 and 1200 °C, 0.7-1.2 GPa suggestive of lower crustal environments. These estimates provide a spatial context for the sampled lithologies thereby placing constraints on the interpretation of geophysical data. Integration of xenolith-derived P-T results with Deep Seismic Soundings (DSS) data suggests that the pyroxenites and websterites are transitional between the lower crust and the upper mantle. A three-layer model for the crust in western India, derived from the xenoliths, is consistent with DSS data. The mafic nature of this hybrid lower crust contrasts with the felsic lower crustal composition of the south Indian granulite terrain.  相似文献   

20.
Peridotite xenoliths from the Bereya alkali picrite tuff in the Vitim volcanic province of Transbaikalia consist of garnet lherzolite, garnet–spinel lherzolite and spinel lherzolite varieties. The volcanism is related to the Cenozoic Baikal Rift. All peridotites come from pressures of 20–23 kbar close to the garnet to spinel peridotite transition depth, and the presence of garnet can be attributed to cooling of spinel peridotites, probably during formation of the lithosphere. The peridotites show petrographic and mineral chemical evidence for infiltration by an alkaline silicate melt shortly before their transport to the Earth's surface. The melt infiltration event is indicated petrographically by clinopyroxenes which mimic melt morphologies, and post-dates outer kelyphitic rims on garnets which are attributed to an isochemical heating event within the mantle before transport to the Earth's surface. Single-mineral thermometry gives reasonable temperature estimates of 1050±50°C, whereas two-mineral methods involving clinopyroxene are falsified by secondary components in clinopyroxene introduced during the melt infiltration event. Excimer Laser–ICP-MS analysis has been performed for an extensive palette of both incompatible and compatible trace elements, and manifests the most thorough dataset available for this rock type. Orthopyroxene and garnet show only partial equilibration of trace elements with the infiltrating melt, whereas clinopyroxene and amphibole are close to equilibration with the melt and with each other. The incompatible element composition of the infiltrating melt calculated from the clinopyroxene and amphibole analyses via experimental mineral/melt partition coefficients is similar to the host alkali picrite, and probably represents a low melt fraction from a similar source during rift propagation. The chemistry and chronology of the events recorded in the xenoliths delineates the series of events expected during the influence of an expanding rift region in the upper mantle, namely the progressive erosion of the lithosphere and the episodic upward and outward propagation of melts, resulting in the evolution of the Vitim volcanic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号