首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olivine-hosted glass inclusions were investigated from tephra samples erupted at Parícutin volcano on four different dates: May 26 and August 1, 1943; January 23, 1945; and March 31, 1948. These dates span the first two thirds of the 9 year eruption, during which time the tephra/lava mass-eruption rate fell dramatically. They also span the strong whole-rock compositional shift of 1947, attributed to the increased importance of crustal contamination. Nine of the 26 analyzed glass inclusions have lower SiO2 contents than any previously analyzed Parícutin lava sample, ranging to below 53 wt%. These silica-poor glasses are found in olivines erupted in 1943 and 1945, and provide evidence for melts that are parental to the main Parícutin lava suite. Total water contents in the glass inclusions measured by Fourier transform infrared (FTIR) spectroscopy vary considerably in all individual samples, with a total range of 1.8-4.0 wt%. Total water contents are not correlated with SiO2 of the glass, Mg# of the adjacent host olivine, or eruption date. Only two glass inclusions have carbonate contents (248 and 296 ppm CO2) above the FTIR detection limit of ~50 ppm CO2; importantly, these inclusions also have the highest total water contents and among the highest SO3t values. These two inclusions were trapped at minimum depths of 9.0-9.6 km beneath the volcano. Thus, early degassing likely stripped most carbon from Parícutin melts at mid-crustal levels. Other glass inclusions yield minimum entrapment depths of 1.3-5.1 km based on water solubility limits. Total sulfur (0.30 to 0.01 wt% SO3) declines as SiO2 contents increase from 52.7 to 60.5 wt%. This trend and the wide range of glass inclusion total water contents are interpreted to reflect degassing accompanied by fractional crystallization and assimilation at upper crustal levels.  相似文献   

2.
Volatiles contribute to magma ascent through the sub-volcanic plumbing system. Here, we investigate melt inclusion compositions in terms of major and trace elements, as well as volatiles (H2O, CO2, SO2, F, Cl, Br, S) for Quaternary Plinian and dome-forming dacite and andesite eruptions in the central and the northern part of Dominica (Lesser Antilles arc). Melt inclusions, hosted in orthopyroxene, clinopyroxene and plagioclase are consistently rhyolitic. Post-entrapment crystallisation effects are limited, and negligible in orthopyroxene-hosted inclusions. Melt inclusions are among the most water-rich yet recorded (≤?8 wt% H2O). CO2 contents are generally low (<?650 ppm), although in general the highest pressure melt inclusion contain the highest CO2. Some low-pressure (<?3 kbars) inclusions have elevated CO2 (up to 1100–1150 ppm), suggestive of fluxing of shallow magmas with CO2-rich fluids. CO2-trace element systematics indicate that melts were volatile-saturated at the time of entrapment and can be used for volatile-saturation barometry. The calculated pressure range (0.8–7.5 kbars) indicates that magmas originate from a vertically-extensive (3–27 km depth) storage zone within the crust that may extend to the sub-Dominica Moho (28 km). The vertically-extensive crustal system is consistent with mush models for sub-volcanic arc crust wherein mantle-derived mafic magmas undergo differentiation over a range of crustal depths. The other volatile range of composition for melt inclusions from the central part is F (75–557 ppm), Cl (1525–3137 ppm), Br (6.1–15.4 ppm) and SO2 (<?140 ppm), and for the northern part it’s F (92–798 ppm), Cl (1506–4428 ppm), Br (not determined) and SO2 (<?569; one value at 1015 ppm). All MIs, regardless of provenance, describe the same Cl/F correlation (8.3?±?2.7), indicating that the magma source at depth is similar. The high H2O content of Dominica magmas has implications for hazard assessment.  相似文献   

3.
Statistical analysis of a data bank of the compositions of glasses and melt inclusions in minerals from ocean-island basalts. The initial database contains more than 45 000 published analyses of ocean-island igneous rocks from around the world. Much attention was given to the contents of volatiles (H2O, Cl, F, and S) and their ratios to one another and to nonvolatile components of close incompatibility (Ti, P, K, and Ce). The average compositions of melt inclusions are similar to those of glasses of the rocks, including volatiles, with consideration for a somewhat higher degree (by approximately 20%) of the differentiation of glasses. The average compositions of ocean-island melts differ from those of mid-ocean basalts in having wider variations and elevated contents of some of the most incompatible elements (Sr, Nb, Ta, Ba, U, Th, and others), as well as H2O, F, and Cl. Based on the correlation of volatiles to one another and to incompatible elements, three groups of ocean-island basalts are distinguished: (I) low-K, P, Ti magma compositions approximating mid-ocean ridge magmas, (II) high-K, Ce, P, and Ti magmas that resemble continental rift magmas but differ from them in low H2O content, and (III) high-K, H2O, Ce, P, and Ti magmas close to continental rift magma. All three types of the melts were found only in the Hawaiian Archipelago, whereas other ocean islands are dominated by any one of these types. The distinguished melt types presumably reflect the differences (heterogeneity) in the compositions of the sources.  相似文献   

4.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

5.
The development of petrogenetic models of igneous processes in the mantle is dependent on a detailed knowledge of the diversity of magmas produced in the melting regime. These primary magmas, however, undergo significant mixing and fractionation during transport to the surface, destroying much of the evidence of their primary diversity. To circumvent this problem and to determine the diversity of melts produced in the mantle, we used melt inclusions hosted in primitive plagioclase phenocrysts from eight mid-ocean ridge basalts from the axial and West Valleys of the Endeavour Segment, Juan de Fuca Ridge. This area was selected for study because of the demonstrated close association of enriched (E-MORB) lavas and incompatible element enriched depleted (N-MORB) lavas. Rehomogenized melt inclusions from E-MORB, T-MORB, and N-MORB lavas have been analyzed by electron and ion microprobe for major and trace elements. The depleted and enriched lavas, as well as their melt inclusions, have very similar compatible element concentrations (major elements, Sr, Ni and Cr). Inclusion compositions are more primitive than, yet collinear with, the host lava suites. In contrast, the minor and trace element characteristics of melt inclusions from depleted and enriched lavas are different both in range and absolute concentration. N-MORB lavas contain both depleted and enriched melt inclusions, and therefore exhibit the largest compositional range (K2O: 0.01 to 0.4 oxide wt%, P2O5: <0.01 to 0.2 oxide wt%, LaN: 7 to 35, YbN: 1 to 13, and Ti/Zr: <100 to 1300). E-MORB lavas contain only enriched inclusions, and are therefore relatively homogeneous (K2O: 0.32 to 0.9 oxide wt %, P2O5: 0.02 to 0.35 oxide wt%, LaN: 11 to 60, YbN: 4 to 21, and Ti/Zr: ∼100). In addition, the most primitive E-32 inclusions are similar in composition to the most enriched inclusions from the depleted hosts. Major element data for melt inclusions from both N-MORB and E-MORB lavas suggest that the magmas lie on a low pressure cotectic, consistent with a petrogenesis including fractional crystallization. However, the minor and trace element compositions in melt inclusions vary independently of the major element composition implying an alternative history. When fractionation-corrected, inclusion compositions correlate with their host glass composition. Hence, the degree of enrichment of the lavas is a function of the composition of aggregated melts, not of processing in the upper mantle or lower crust. Based on this fact, the lava suites are not produced from a single parent magma, but from a suite of primary magmas. The chemistry of the melt inclusions from the enriched lavas is consistent with a derivation from variable percentages of partial melting within the spinel stability field by a process of open system (continuous or critical) melting assuming a depleted lherzolite source veined with clinopyroxenite. The low percentage melts are dominantly enriched melts of the clinopyroxenite. In contrast, the depleted lavas were created by melting of a harzburgite source, possibly fluxed with a fluid enriched in K, Ba and the LREE. Such a source was likely melted up to or past the point at which all of its clinopyroxene was consumed. This set of characteristics is consistent with a scenario by which diverse melts produced at different depths travel through the melting regime to the base of the crust without homogenizing en route. The homogeneous major element characteristics are created in the lower crust by fractional crystallization and reaction with lower crustal gabbros. Therefore, the degree of decoupling between major and trace element characteristics of the melt inclusions (and lavas) is dictated by the reaction rate of the melts with the materials in the conduit walls, as well as the residence times and flux rate, in the upper mantle and lower crust. Received: 2 December 1997 / Accepted: 27 August 1998  相似文献   

6.
We describe and model a potential re-equilibration process that can affect compositions of melt inclusions in magnesian olivine phenocrysts. This process, referred to as “Fe-loss”, can operate during natural pre-eruptive cooling of host magma and results in lower FeOt and higher MgO contents within the initially trapped volume of inclusion. The extent of Fe-loss is enhanced by large temperature intervals of magma cooling before eruption. The compositions of homogenised melt inclusions in olivine phenocrysts from several subduction-related suites demonstrate that (1) Fe-loss is a common process, (2) the maximum observed degree of re-equilibration varies between suites, and (3) within a single sample, variable degrees of re-equilibration can be recorded by melt inclusions trapped in olivine phenocrysts of identical composition. Our modelling also demonstrates that the re-equilibration process is fast going to completion, in the largest inclusions in the most magnesian phenocrysts it is completed within 2 years. The results we obtained indicate that the possibility of Fe-loss must be considered when estimating compositions of parental subduction-related magmas from naturally quenched glassy melt inclusions in magnesian olivine phenocrysts. Compositions calculated from glassy inclusions affected by Fe-loss will inherit not only erroneously low FeOt contents, but also low MgO due to the inherited higher Mg##of the residual melt in re-equilibrated inclusions. We also demonstrate that due to the higher MgO contents of homogenised melt inclusions affected by Fe-loss, homogenisation temperatures achieved in heating experiments will be higher than original trapping temperatures. The extent of overheating will increase depending on the degree of re-equilibration, and can reach up to 50 °C in cases where complete re-equilibration occurs over a cooling interval of 200 °C. Received: 2 November 1998 / Accepted: 27 September 1999  相似文献   

7.

东天山地区的二叠纪玄武岩沿着区域的北东东向断裂呈脉状分布,吐哈盆地玄武岩的40Ar-39Ar坪年龄为298.2±3.8Ma,为早二叠世,与前人的玄武岩年龄结果在误差范围内一致。可能与东天山地区二叠纪岩浆铜镍矿床镁铁-超镁铁岩有密切的成因联系。吐哈玄武岩的主微量成分显示其为岛弧拉斑、大陆弧玄武岩,轻稀土富集和Nb、Ta负异常,指示源区可能经历过俯冲作用的改造。吐哈盆地二叠纪玄武岩含有新鲜的橄榄石和长石斑晶,橄榄石斑晶中熔融包裹体较发育。熔融包裹体为玻璃质、气相和玻璃质、气相、固相两种类型。包裹体中不透明矿物主要为磁铁矿,说明捕获包裹体时岩浆的氧逸度和Fe含量较高。熔融包裹体分为高MgO和低MgO含量两种。高MgO含量的包体同时具有低SiO2、低微量和稀土元素含量的特征,可能为地幔高部分熔融的产物,且经历过深部演化程度较弱。该高MgO熔体的微量元素显示Nb、Ta亏损的特征,具有N-MORB特征的微量和稀土元素分配模式,预示该熔体为受到俯冲交代的地幔熔融形成。熔融包裹体相对玄武岩具有低的Th和Ta含量、相对弱的Nb和Ta的负异常的特征,指示熔融包裹体的成分经受改造程度低于玄武岩,暗示可能为经历过较少后期作用改造的相对原始的熔体。熔体中Cu含量(12.4×10-6~299×10-6)在正常玄武质岩浆含量范围内,而Ni含量(236×10-6~697×10-6)高于高镁溢流科马提岩和洋中脊玄武岩。该Cu、Ni含量略显解耦的熔体可能代表了经历过深部少量的硫化物熔离,带走小部分Cu和Ni等成矿元素之后所捕获的岩浆。如果将该熔体视为东天山地区二叠纪岩浆铜镍硫化物矿床的母岩浆,该母岩浆中Ni含量相对较高可能是岩浆铜镍硫化物矿床中矿石的Ni/Cu比值大多大于1.0的主要因素。

  相似文献   

8.
We introduce a novel scheme that enables natural silicic glasses to be projected into the synthetic system Qz-Ab-Or-H2O in order to relate variations in volcanic glass chemistry to changing pressure (P) and temperature (T) conditions in the sub-volcanic magma system. By this means an important distinction can be made between ascent-driven and cooling-driven crystallisation under water-saturated or undersaturated conditions. In samples containing feldspar and a silica phase (quartz or tridymite), quantitative P-T estimates of the conditions of last equilibrium between crystals and melt can be made. Formation of highly silicic melts (i.e. >77 wt% SiO2) is a simple consequence of the contraction of the silica phase volume with decreasing pressure, such that high silica glasses can only form by crystallisation at low pressure. Resorption of quartz crystals appears to be a further diagnostic feature of decompression crystallisation. Groundmass and inclusion glasses in dacites from the 1980-1986 eruption of Mount St Helens volcano (WA) span a wide range in SiO2 (68-80 wt%, anhydrous). The compositions of the least evolved (SiO2-poor) inclusions in amphibole phenocrysts record entrapment of silicic liquids with Е.4 wt% water, corresponding to a water saturation pressure of ~200 MPa at 900 °C. The compositions of more evolved (higher SiO2) plagioclase-hosted inclusions and groundmass glasses are consistent with extensive ascent-driven fractional crystallisation of plagioclase, oxide and orthopyroxene phenocrysts and microlites to low pressures. During this polybaric crystallisation, plagioclase phenocrysts trapped melts with a wide range of dissolved water contents (3.5-5.7 wt%). Magmas erupted during the Plinian phase of the 18 May 1980 eruption were derived from a large reservoir at depths of ̈́ km. Subsequent magmas ascended to varying depths within the sub-volcanic system prior to extraction. From glass chemistry and groundmass texture two arrest levels have been identified, at depths of 0.5-1 and 2-4 km. A single dome sample from February 1983 contains groundmass plagioclase, tridymite and quartz, testifying to temperatures of at least 885 °C at 11 MPa. These shallow storage conditions are comparable to those in the cryptodome formed during spring 1980. The corresponding thermal gradient, А.2 °C MPa-1, is consistent with near-adiabatic magma ascent from ~8 km. We argue that the crystallisation history of Mount St Helens dacite magma was largely a consequence of decompression crystallisation of hot magma beyond the point of water saturation. This challenges the conventional view that phenocryst crystallisation occurred by cooling in a large magma chamber prior to the 1980-1986 eruption. Because the crystallisation process is both polybaric and fractional, it cannot be simulated directly using isobaric equilibrium crystallisation experiments. However, calculation of the phase proportions in water-saturated 910ᆣ °C experiments by Rutherford et al. (1985) over the pressure range 220-125 MPa reproduces the crystallisation sequence and phenocryst modes of Mount St Helens dacites from 18 May 1980. By allowing for the effects of fractional versus equilibrium crystallisation, entrained residual source material, and small temperature differences between nature and experiment, phase compositions can also be matched to the natural samples. We conclude that decompression of water-saturated magma may be the dominant driving force for crystallisation at many other silicic volcanic centres.  相似文献   

9.
As the water concentration in magma decreases during magma ascent, olivine-hosted melt inclusions will reequilibrate with the host magma through hydrogen diffusion in olivine. Previous models showed that for a single spherical melt inclusion in the center of a spherical olivine, the rate of diffusive reequilibration depends on the partition coefficient and diffusivity of hydrogen in olivine, the radius of the melt inclusion, and the radius of the olivine. This process occurs within a few hours and must be considered when interpreting water concentration in olivine-hosted melt inclusions. A correlation is expected between water concentration and melt inclusion radius, because small melt inclusions are more rapidly reequilibrated than large ones when the other conditions are the same. This study investigates the effect of diffusive water loss in natural samples by exploring such a correlation between water concentration and melt inclusion radius, and shows that the correlation can be used to infer the initial water concentration and magma ascent rate. Raman and Fourier transform infrared spectroscopy measurements show that 31 melt inclusions (3.6–63.9 μm in radius) in six olivines from la Sommata, Vulcano Island, Aeolian Islands, have 0.93–5.28 wt% water, and the host glass has 0.17 wt% water. The water concentration in the melt inclusions shows larger variation than the data in previous studies (1.8–4.52 wt%). It correlates positively with the melt inclusion radius, but does not correlate with the major element concentrations in the melt inclusions, which is consistent with the hypothesis that the water concentration has been affected by diffusive water loss. In a simplified hypothetical scenario of magma ascent, the initial water concentration and magma ascent rate are inferred by numerical modeling of the diffusive water loss process. The melt inclusions in each olivine are assumed to have the same initial water concentration and magma ascent rate. The melt inclusions are assumed to be quenched after eruption (i.e., the diffusive water loss after eruption is not considered). The model results show that the melt inclusions initially had 3.9–5.9 wt% water and ascended at 0.002–0.021 MPa/s before eruption. The overall range of ascent rate is close to the lower limit of previous estimates on the ascent rate of basalts.  相似文献   

10.
Summary ¶The Campanian Ignimbrite rock samples include two compositionally distinct populations of clinopyroxene phenocrysts, and the entrapped MI (melt inclusions) are also different in composition. The cores of the more MgO-enriched phenocrysts carry basaltic trachyandesite MI that contain >6wt.% MgO, whereas other phenocrysts contain MI with <4wt.% MgO. The MgO-enriched MI also contain comparatively greater abundances of F, CaO, TiO2, P2O5, SO2, and Sr and show marginally higher ratios of (CaO/Al2O3) than the low-MgO MI. Most of the high-MgO MI also contain comparatively more H2O. The MgO-enriched MI are restricted to diopsidic clinopyroxenes and show minimal compositional variability, demonstrating that they were derived from a common magmatic source or sources. We interpret these MI to represent primary, mafic magma. In contrast, the more evolved, low-MgO melt inclusions, which are restricted to salitic clinopyroxenes, span the compositional range of trachyandesite to trachyte. The low-MgO fractions of Campanian Ignimbrite magma evolved via fractional crystallization with or without mingling or mixing with more primitive, high-MgO magma.Interestingly, the MI from the Giugliano sample also cluster into low-MgO and high-MgO fractions, and the evolutionary trends for major, minor, and trace elements mirror those exhibited by the Campanian Ignimbrite MI, suggesting that both magmas were derived from similar or the same source(s) and that the processes of magma evolution were equivalent for both magmas.The MI also indicate that the Campanian Ignimbrite and Giugliano magmas did not form by evolution of Taurano magma, because the geochemical trends expressing melt evolution of the former and latter magmas are too dissimilar. Most Taurano MI show higher (CaO/Al2O3) and contain less SiO2, (Na2O+K2O), Cl, Li, Rb, Cs, Sr, Nb, Th, and U than the high-MgO and low-MgO Campanian Ignimbrite and Giugliano MI, indicating that the Taurano MI represent magmas which were much more primitive.Received July 15, 2002; revised version accepted March 27, 2003  相似文献   

11.
The impact of volcanic eruptions on forest ecosystems can be investigated using dendrochronological records. While long-range effects are usually mediated by decreased air temperatures, resulting in frost rings or reduced maximum latewood density, local effects include abrupt suppression of radial growth, occasionally followed by greater than normal growth rates. Annual rings in Mexican mountain pine (Pinus hartwegii Lindl.) on Nevado de Colima, at the western end of the Mexican Neovolcanic Belt, indicate extremely low growth in 1913 and 1914, following the January 1913 Plinian eruption of Volcán de Fuego, 7.7 km to the south. That event, which is listed among the largest explosive eruptions since A.D. 1500, produced ashflow deposits up to 40 m thick and blanketed our study area on Nevado de Colima with a tephra fallout 15–30 cm deep. Radial growth reduction in 1913–14 was ≥30% in 73% of the sampled trees. We geostatistically investigated the ecological impact of the eruption by mapping the decrease in xylem increment and found no evidence of a spatial structure in growth reduction. Little information has been available to date on forest species as biological archives of past environments in the North American tropics, yet this historical case study suggests that treeline tropical sites hold valuable records of prehistoric phenomena, including volcanic eruptions.  相似文献   

12.
Melt inclusions and hosting them highly magnesian olivine from rocks of Kamchatka and the Western Aleutian island arc were analyzed for copper content by LA-ICP-MS to determine the copper partition coefficient in primitive island-arc magmas. Based on measurements of 45 olivine–melt pairs, this coefficient was determined to be 0.028 ± 0.009 (2σ), which is the lowest value among previously published data. Mass-balance calculations of copper in a typical mantle peridotite using obtained partition coefficient indicate that its content in peridotite and primary mantle magmas is mainly determined by mantle sulfide. The Cu partition coefficient was also used to calculate the copper content in parental magmas of volcanoes of the Central Kamchatka Depression. Estimates obtained using copper content in phenocrysts of primitive olivine (Fo > 88 mol %) from these rocks are, on average, 139 ± 58 ppm (2σ), which exceed copper contents in primitive basalts (MgO > 8.5 wt %) of mid-ocean ridges (MORB 93 ± 31 ppm). This suggests the primary enrichment of Central Kamchatka magmas in copper and correlates with their more oxidizing conditions of formation as compared to MORB.  相似文献   

13.
Melt inclusions in ureilites occur only in the small augite- and orthopyroxene-bearing subgroups. Previously [Goodrich C.A., Fioretti A.M., Tribaudino M. and Molin G. (2001) Primary trapped melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009. Geochim. Cosmochim. Acta65, 621-652] we described melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009 (Hughes). FRO 90054/93008 (FRO) is a near-twin of Hughes, and has abundant melt inclusions in all three primary silicates. We use these inclusions to reconstruct the major, minor and rare earth element composition of the Hughes/FRO parent magma and evaluate models for the petrogenesis of augite-bearing ureilites.Hughes and FRO consist of 23-47 vol % olivine (Fo 87.3 and 87.6, respectively), 7-52 vol % augite (mg 89.2, Wo 37.0 and mg 88.8, Wo 38.0, respectively), and 12-56 vol % orthopyroxene (mg 88.3, Wo 4.9 and mg 88.0, Wo 4.8, respectively). They have coarse-grained (?3 mm), highly-equilibrated textures, with poikilitic relationships indicating the crystallization sequence olivine → augite → orthopyroxene. FRO is more shocked than Hughes, experienced greater secondary reduction, and is more weathered. The two meteorites are probably derived from the same lithologic unit.Melt inclusions in olivine consist of glass ± daughter cpx ± metal-sulfide-phosphide spherules ± chromite, and have completely reequilibrated Fe/Mg with their hosts. We follow the method of Goodrich et al. (2001) for reconstructing the composition of the primary trapped liquid they represent (olPTL), but correct an error in our treatment of the effects of reequilibration. Inclusions in augite consist of glass, which shows only partial reequilibration of Fe/Mg. The composition of the primary trapped liquid they represent (augPTL) is reconstructed by reverse fractional crystallization of wall augite from the most ferroan glass. Inclusions in orthopyroxene consist of glass + 30-50 vol % daughter cpx. The cpx shows complete, but the glass only partial, reequilibration of Fe/Mg. A range of possible compositions for the primary trapped liquid they represent (opxPTL) is calculated by modal recombination of glass and cpx, followed by addition of wall orthopyroxene and adjustment of Fe/Mg for equilibrium with the primary orthopyroxene. Only a small subset of these compositions is plausible on the basis of being orthopyroxene-saturated.Results indicate that olPTL, assumed to represent the parent magma of these rocks, was saturated only with olivine and in equilibrium with Fo ∼ 83. AugPTL and opxPTL are very similar in composition; both are close to augite + orthopyroxene co-saturation and in equilibrium with Fo 87/8. We suggest that olPTL was reduced to Fo 87/8 due to smelting during ascent, and show that this produces a composition very similar to that of augPTL and opxPTL.REE data for each of the three primary silicates and the least evolved melt inclusions in olivine are used to calculate REE abundances in the Hughes/FRO parent magma. All four methods yield very similar results, indicating a REE pattern that is strongly LREE-depleted (Sm/La = 3.3-3.7), with a small negative Eu anomaly (Eu/Eu* = 0.82) and slight HREE-depletion (Gd/Lu = 1.4-1.6).The Hughes/FRO parent magma provides a robust constraint on models for the petrogenesis of augite-bearing ureilites. Its major, minor and rare earth element composition suggests derivation through mixing and/or assimilation processes, rather than as a primary melt on the ureilite parent body.  相似文献   

14.
The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.  相似文献   

15.
This paper reports the results of numerical simulation for the behavior of rare earth elements (REE) during decompression degassing of H2O- and Cl-bearing granite melts at pressures decreasing from 3 to 0.5–0.3 kbar under near isothermal conditions (800 ± 25°C). Fluid phase in equilibrium with the melt contains mainly chloride REE complexes, and their behavior during magma degassing is, therefore, intimately related to the behavior of chlorine. It was shown that the contents and distribution patterns of REE in the aqueous chloride fluid phase formed during decompression vary considerably depending on (1) the contents of volatiles (Cl and H2O) in the initial melt, (2) the redox state of the magma, and (3) the dynamics of fluid phase separation from magmas during their ascent toward the Earth’s surface. During decompressiondriven degassing, the contents of both Cl and REE in the fluid decrease, especially dramatically under opensystem conditions. The REE patterns of the fluid phase compared with those of the melt are characterized by a higher degree of light to heavy REE fractionation. A weak negative Eu anomaly may be present in the REE patterns of Cl-rich fluids formed during the early stages of degassing at relatively high pressures. At a further decrease in pressure and Cl content in the fluid, it is transformed into a positive Eu anomaly increasing during decompression degassing. Such an anomalous behavior of Eu during degassing is related to its occurrence in magmatic melts in two valence states, Eu3+ and Eu2+, whereas the other REE occur in melts mainly as (REE)3+. The Eu3+/Eu2+ ratio of melt is controlled by the redox state of the magmatic system. The higher the degree of melt reduction, the more pronounced the anomalous behavior of Eu during decompression degassing. The amount of REE extracted by fluid from melt during various stages of degassing does not significantly influence the content and distribution patterns of REE in the melt.  相似文献   

16.
17.
Water concentrations of olivine-hosted melt inclusions show no consistent variation across the northern part of the Central American subduction zone in southeastern Guatemala. Magmatic water contents remain moderately high (~2 wt%) throughout the back-arc region. Melt inclusions from some of these back-arc basalts also have notably high CO2 contents (>900 ppm CO2). The B and B/Ce ratios of melt inclusions systematically decline across the arc, the first parameters to exhibit systematic changes across southeastern Guatemala. It appears, therefore, that dehydration-driven, flux-melting persists across the arc, although decompression melting is of approximately equal importance in the back-arc region. Dehydration of the slab/wedge region is regarded as semi-continuous down-dip, to depths of at least 175–200 km. Moderate water contents are maintained by stepwise dehydration reactions, while truly incompatible fluid mobile elements are progressively stripped from the Cocos plate. The notably high CO2 contents of some back-arc basalts may indicate increasing devolatilization of subducted carbonate sediments with slab depth. The moderate H2O contents of back-arc basaltic magmas has likely contributed to their early fractionation of clinopyroxene around the Moho.Editorial responsibility: T.L. Grove  相似文献   

18.
 Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures >30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands. Received: 23 October 1995/Accepted: 21 February 1996  相似文献   

19.
In this paper, we address the average compositions (including the contents of H2O, Cl, F, and S) and the compositional structure of oceanic mantle plumes on the basis of element contents and ratios in ocean island magmas. The average contents of incompatible volatile and nonvolatile elements were calculated for the material of mantle plumes using a thermal and a more plausible moderately enriched model. The following average contents were estimated for the plume mantle: 510 ppm K2O, 520 ppm H2O, 21 ppm Cl, 55 ppm F, and 83 ppm S. These values are significantly higher than those of the depleted mantle (except for S). The primitive mantle normalized average content of water in mantle plumes is similar to those of La and Ce but lower than those of K, Cl, and Sr. This is at odds with the hypothesis of “wet” mantle plumes. Three types of basaltic magmas distinguished in our previous study (Part I) characterize three types of plume sources (MI, MII, and MIII). Using the favored moderately enriched model, the average contents of H2O, Cl, F, and S were estimated for the three sources (ppm): 130, 33, 11, and 110 for MI; 110, 12, 65, and 45 for MII; and 530, 29, 49, and 110 for MIII, respectively. The plume mantle is heterogeneous and its heterogeneity can be described by the presence of three main types of compositions, one of which (MI) is similar to the composition of the mid-ocean ridge mantle and the other two types (MII and MIII) are moderately enriched in K, Ti, P, F, and incompatible trace elements but depleted in Cl, H2O, and sometimes S. The compositions of MII and MIII have different H2O, Cl, and S contents: MII is significantly depleted in these components compared with MIII. The MII component is probably similar to the enriched mantle (EM). In addition to the aforementioned three main components, the plume mantle probably contains high-Cl and low-F materials, which are related to the recycling of the oceanic and continental crust. All the observed characteristics of the mantle plumes are in adequate agreement with the model of a zonal mantle plume including a central part hot and depleted in H2O, Cl, and S; a periphery enriched in volatile components; and the enclosing mantle interacting with the plume material.  相似文献   

20.
The 2010 eruption of Merapi (VEI 4) was the volcano’s largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapi’s recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6–9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform “buffered” Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a brine phase, which helped to stabilise B in the melt. Calculations based on S concentrations in melt inclusions and groundmass glass require a degassing melt volume of 0.36 km3 in order to produce the mass of SO2 emitted during the 2010 eruption. This volume is approximately an order of magnitude higher than the erupted magma (DRE) volume. The transition between the contrasting eruptive styles in 2010 and 2006 is linked to changes in magmatic flux and changes in degassing style, with the explosive activity in 2010 driven by an influx of deep magma, which overwhelmed the shallower magma system and ascended rapidly, accompanied by closed-system degassing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号