首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The island of Lundy forms the southernmost igneous complex of the British Tertiary Volcanic Province (BTVP) and consists of granite (≈ 90%) emplaced into deformed Devonian sedimentary rocks (Pilton Shale) and associated with a swarm of dykes of dolerite/basalt, minor trachyte and rhyolite composition. The dolerites are of varied olivine basalt composition and are associated with peralkaline trachyte and subalkaline/peralkaline rhyolite with alkali feldspar and quartz ± alkali amphibole ± pyroxene mineralogy. The dyke swarm is therefore an anorogenic bimodal dolerite/basalt–trachyte/rhyolite BTVP association. Although the dyke association is bimodal in major element terms between dolerite/basalt and minor trachyte/rhyolite, the mineralogy and trace element geochemistry indicate that the dykes may be regarded as a cogenetic dolerite—peralkaline trachyte/rhyolite association with minor subalkaline rhyolites. Sr and Nd isotope data indicate derivation of these magmas from a similar BTVP mantle source (with or without minor contamination by Pilton Shale, or possibly Lundy granite). The petrogenesis of the Lundy dyke association is therefore interpreted in terms of extensive fractional crystallization of basaltic magma in a magma chamber of complex geometry below the (exposed) Lundy granite. Fractional crystallization of a representative dolerite magma (olivine ± clinopyroxene ± plagioclase) yields trachyte magma from which the crystallization of alkali feldspar (anorthoclase) ± plagioclase (oligoclase) + Fe–Ti oxide + apatite results in peralkaline rhyolite. Rarer subalkaline rhyolites result from fractionation from a similar dolerite source which did not achieve a peralkaline composition so allowing the crystallization and fractionation of zircon. The basalt–(minor trachyte)/rhyolite bimodality reflects rapid crystallization of basalt magma to trachyte (and rhyolite) over a relatively small temperature interval (mass fraction of melt, F = ≈ 0.15). The rapid high level emplacement of basalt, trachyte and rhyolite dyke magmas is likely to have been associated with the development of a substantial composite bimodal basalt–(minor trachytel)/rhyolite volcano above the BTVP Lundy granite in the Bristol Channel.  相似文献   

2.
《International Geology Review》2012,54(16):2016-2029
The Salmas area, in the northernmost part of the Sanandaj–Sirjan zone of Iran, contains a crystalline mafic–intermediate complex that intrudes into the Precambrian metamorphic basement complex and is composed of gabbroic and gabbrodiorite cumulates and fine-grained non-cumulate gabbronorites and diorites. These rocks have fine- to coarse-grained texture and are mainly composed of plagioclase, pyroxenes, and amphibole. Major element geochemistry indicates that the pluton has a low-K with tholeiitic affinity. Variations of major and trace elements on Harker diagrams, including negative correlations MgO, Fe2O3, CaO, and Co and positive correlations Na2O, K2O, Rb, Ba, and La, with increasing SiO2 and chondrite-normalized REE patterns, suggest that fractional crystallization of gabbroic rocks could have played a significant role in the formation of evolved rocks. The chondrite-normalized REE patterns are not fractionated (LaN /LuN = 1.3–5.4) and display strong Eu anomalies (Eu/Eu* = 1.15–1.76) in cumulate rocks, which we attributed to cumulus plagioclase. Sr and Nd isotopic ratios vary from 0.704698 to 0.705866 and from 0.512548 to 0.512703, respectively. Gabbronorites with high 143Nd/144Nd ratios, low 87Sr/86Sr ratios, and high MgO, Ni, and Cr contents indicate that they were generated from relatively primitive magmas. We used petrogenetic modelling to constrain sources. Trace element ratio modelling indicates that the gabbroic rocks were generated from a spinel-peridotite source via 5–20% degrees of fractional melting at a depth of ~52 km. Major and REE modelling shows that the diorites are the products of fractional crystallization of gabbronorites.  相似文献   

3.
Hercynian gabbroic, dioritic and tonalitic rocks crop out in the neighbourhood of Rovale (Sila Grande, Calabria). They make up a crude rectangular outcrop with the western part consisting of gabbroic rocks and the eastern of dioritic and tonalitic rocks. They come into contact with medium to high grade metapelites on the western side and with heterogeneous granodiorites on the other sides. In the gabbroic body both opx ± ol bearing cumulates and amphibole differentiates occur and are characterized by the widespread presence of brown pargasite. Sporadic magmatic to subsolidus corona textures between olivine and plagioclase or orthopyroxene and plagioclase can be observed and their preservation clearly suggests a post-tectonic emplacement for the gabbroic magma. Diorites and tonalites display hypidiomorphic textures free of olivine and orthopyroxene and bearing green Mg-hornblende. The granitoids, on the basis of chemical data, display orogenic features of the continent-continent collision type. The gabbroic rocks have high Al tholeiitic composition and fractionation of orthopyroxene and plagioclase played an important part in their evolution. The Rb/Sr isochron method did not give a precise emplacement age for the granitoids as a whole. Initial 87Sr/86Sr ratios (at 290 Ma) are higher in the gabbroic body (0.7091–0.7095) than in diorites and tonalites (0.7083–0.7092). Thus gabbroic rocks appear more displaced than diorites and tonalites towards crustal isotopic composition. The eNd data seem to confirm this feature, thus suggesting that the gabbroic rocks and diorites derived from distinct mantle magma batches. Interestingly, small isotropic gabbroic masses occur within the diorites and show general features that allow them to be considered as possibly parental with respect to the host diorites. The evolution to the dioritic composition might have occurred through fractionation and minor mixing with a more acidic component such as the northern granodiorites. Geochemical, Sr and Nd isotopic data indicate a scenario of a composite plutonic body formed by distinct magma batches of mixed crust and mantle origin.  相似文献   

4.
Using the HyMap instrument, we have acquired visible and near infrared hyperspectral data over the Maqsad area of the Oman ophiolite (~ 15 × 60 km). This survey allowed us to identify and map the distribution of clinopyroxene-rich cumulates (inter-layered clinopyroxenites and wehrlites) whose occurrence was previously undocumented in this area. The cumulates reach several hundred meters in thickness and crop out at distances exceeding 15 km on both sides of the Maqsad former spreading centre. They occur either in mantle harzburgites, as km-sized layered intrusions surrounded by fields of pegmatitic dykes consisting of orthopyroxene-rich pyroxenite and gabbronorites, or at the base of the crustal section where they are conformably overlain by cumulate gabbros. These ultramafic cumulates crystallized from silica- and Mg-rich melts derived from a refractory mantle source (e.g. high Cr#, low [Al2O3], low [TiO2]). These melts are close to high-Ca boninites, although, strictly speaking, not perfect equivalents of present-day, supra-subduction zone, boninites. Chemical stratigraphy reveals cycles of replenishment, mixing and fractional crystallization from primitive (high Mg#) melts, typical of open magma chambers and migration of inter-cumulus melts. The TiO2 content of clinopyroxene is always low (≤ 0.2 wt.%) but quite variable compared to the associated pegmatites that are all derived from a source ultra-depleted in high field strength elements (HFSE). This variability is not caused by fractional crystallization alone, and is best explained by hybridization between the ultra-depleted melts (parent melts of the pegmatites) and the less depleted mid-ocean ridge basalts (MORB) parent of the dunitic–troctolitic–gabbroic cumulates making up the crustal section above the Maqsad diapir.We propose that, following a period of magma-starved spreading, the Maqsad mantle diapir, impregnated with tholeiitic melts of MORB affinity, reached shallow depths beneath the ocean ridge. This diapir induced melting of the formerly accreted and hydrothermally altered lithosphere. At this stage, these boninitic-like lithospheric melts crystallized as pegmatitic dykes. As the diapir continued to rise, the amount of MORB reaching shallow depths increased, together with the surrounding temperature, leading to the formation of magma chambers where the crystallization of layered cumulates became possible. These cumulates remained rich in pyroxene and devoid of plagioclase as long as the contribution of MORB-derived melts was moderate relative to the lithospheric-derived melts. As the contribution of MORB to the refilling of the magma chamber increased, gabbroic cumulates started to crystallize.  相似文献   

5.
系统的微量元素和Sm-Nd同位素分析表明,川西地区早震旦世苏雄组双峰式火山岩中的大多数玄武岩具有高的正εNd(T)值(+5~+6)、大离子亲石元素和LREE富集,与现代典型的洋岛玄武岩和大陆溢流玄武岩省中的碱性玄武岩有非常相似的地球化学和同位素组成特征。酸性火山岩的εNd(T)值较低(+1.1~+2.6),地球化学特征总体上与A2-型花岗岩相似,它们是受地壳混染的OIB型玄武质岩浆在地壳中部的一个“双扩散”岩浆房通过结晶分异形成的。苏雄组双峰式火山岩形成于典型的大陆裂谷环境,非常类似于现代与地幔柱活动有关的高火山活动型裂谷火山岩,扬子块体西缘 800Ma前的裂谷作用和火山活动应是约825Ma前的华南地幔柱活动引发的结果。  相似文献   

6.
Review Section     
ABSTRACT

The petrology, geochronology, and geochemistry of the early Permian volcanic rocks from Houtoumiao area, south Xiwuqi County in central Inner Mongolia of China, are studied to elucidate the early Permian tectonic setting of the region. The volcanic rocks, which are interbedded with sandstone, feature both mafic and felsic compositions and show a bimodal nature. Zircon U–Pb dating reveals that the volcanic rocks formed at 274–278 Ma, similar to the ages of bimodal magmatism in neighbouring areas. The mafic rocks are composed of tholeiitic basalt, basaltic andesite, basaltic trachyandesite, and trachyandesite. They are rich in Th, U, and LILEs, depleted in HFSEs Nb, Ta, and Ti, and have positive εNd(t) values (+3.6 to +7.9). Geochemical analyses indicate that the mafic rocks originated from metasomatized lithospheric mantle. The felsic volcanic rocks are mainly rhyolite, with minor trachyte and dacite. They have different evolutionary tendencies of major elements, chondrite-normalized REE patterns, and isotopic compositions from the mafic volcanic rocks, which preclude formation by fractional crystallization of mafic melts. The εNd(t) values of the felsic rocks are similar to those of the Carboniferous Baolidao arc rocks in the region. It is suggested that Permian felsic melts originated from the partial melting of Carboniferous juvenile arc-related rocks. By comparison with typical Cenozoic bimodal volcanism associated with several tectonic settings, including rift, post-collisional setting, back-arc basin, and the Basin and Range, USA, the bimodal volcanic rocks in central Inner Mongolia display similar petrological and geochemical characteristics to the rocks from back-arc basin and the Basin and Range, USA. Based on the analysis of regional geological data, it is inferred that the early Permian bimodal volcanic rocks in the study area formed on an extensional continental margin of the Siberian palaeoplate after late Carboniferous subduction–accretion.  相似文献   

7.
The post-Variscan complex of Porto consists of metaluminous to slightly peraluminous A-type biotite granites mingled with gabbro-dioritic rocks, and late dykes with basaltic to trachyandesitic composition. U-Pb zircon dating by LA-ICP-MS on two mafic intrusive samples constrains the time of the gabbro–granite crystallisation at 281 ± 3 Ma and 283 ± 2 Ma. Hornblende 40Ar-39Ar ages from a late trachyandesite dyke date the dyking event at 280 ± 2 Ma, which is within error the U-Pb zircon ages of the intrusives. Biotite granites show variable major and trace element compositions and similar initial εNd (−0.3 to +0.9). Whole rock chemistry variations and trace element compositions of plagioclase and allanite indicate that the granites are genetically linked, essentially through fractional crystallisation of feldspars and minor allanite. On the basis of whole-rock chemistry e.g. initial εNd +4.9 to +1.7 and trace element clinopyroxene compositions, we have ascertained that the mafic intrusives and basic dykes formed from isotopically depleted mantle source-derived melts with similar trace element signature. These basic melts experienced slightly different evolutionary histories, controlled by fractional crystallisation and crustal contamination, mainly by the acid magma that gave rise to the associated biotite granites, but also by the enclosing older Variscan granitoids. U-Pb zircon data suggest that the Porto complex was affected by hydrothermal fluid circulation at 259 ± 9 Ma.  相似文献   

8.
A. nal 《Geological Journal》2008,43(1):95-116
The Middle Miocene Orduzu volcanic suite, which is a part of the widespread Neogene Yamadağ volcanism of Eastern Anatolia, consists of a rhyolitic lava flow, rhyolitic dykes, a trachyandesitic lava flow and basaltic trachyandesitic dykes. Existence of mafic enclaves and globules in some of the volcanic rocks, and microtextures in phenocrysts indicate that magma mingling and mixing between andesitic and basaltic melts played an important role in the evolution of the volcanic suite. Major and trace element characteristics of the volcanic rocks are similar to those formed in convergent margin settings. In particular, incompatible trace element patterns exhibit large depletions in high field strength elements (Nb and Ta) and strong enrichments in both large ion lithofile elements (Ba, Th and U) and light rare earth elements, indicating a strong subduction signature in the source of the volcanic rocks. Furthermore, petrochemical data obtained suggest that parental magmas of rhyolite lava and dykes, and trachyandesite lava and basaltic trachyandesite dykes were derived from subduction‐related enriched lithospheric mantle and metasomatized mantle (± asthenosphere), respectively. A detailed mineralogical study of the volcanic suite shows that plagioclase is the principal phenocryst phase in all of the rock units from the Orduzu volcano. The plagioclase phenocrysts are accompanied by quartz in the rhyolitic lava flows and by two pyroxenes in the trachyandesitic lava flows and basaltic trachyandesitic dykes. Oxide phases in all rocks are magnetite and ilmenite. Calculated crystallization temperatures range from 650°C to 800°C for plagioclase, 745°C–1054°C for biotite, 888°C–915°C for pyroxene and 736°C–841°C for magnetite–ilmenite pairs. Calculated crystallization pressures of pyroxenes vary between 1.24–5.81 kb, and oxygen fugacity range from −14.47 to −12.39. The estimates of magmatic intensive parameters indicate that the initial magma forming the Orduzu volcanic unit began to crystallize in a high‐level magma chamber and then was stored in a shallow reservoir where it underwent intermediate‐mafic mixing. The rhyolitic lava flow and dykes evolved in relatively shallower crustal magma chambers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The mafic dykes in Wadi Mandar-Wadi Um Adawi area are as follows: (1) calc-alkaline lamprophyre (i.e., kersantite and spessartite), (2) diabase, and (3) alkaline lamprophyre (i.e., camptonite). The field relations reveal that the emplacement of calc-alkaline lamprophyres preceded the diabase dykes, while alkaline lamprophyres emplaced later than the diabase dykes. Calc-alkaline are basaltic andesite, basaltic trachyandesite to basalt, while the diabase dykes and alkaline lamprophyres are basaltic in composition. These dykes are characterized by metaluminous character. Calc-alkaline lamprophyres and diabase dykes show transitional affinity from calc-alkaline to alkaline, while the alkaline lamprophyres exhibit more strong alkaline character. The mafic dykes were crystallized under temperature 1100–1150 °C and pressure 3–5 kbars in a high oxygen fugacity conditions. Fe-Ti oxides in the dykes are represented by ilmenite and Ti-magnetite. The chemistry of the sulfides hosted in those mafic dykes suggests a magmatic-hydrothermal origin for these minerals. The geochemical behavior of high field strength elements and large ion lithophile elements in these dykes excludes the derivation of diabase or alkaline lamprophyre either by partial melting or fractional crystallization from calc-alkaline lamprophyre. The parental magmatic sources of the studied dykes were generated from crustal material with addition of mantle-derived melt during the post-collisional stage. The mafic dykes in Wadi Mandar-Wadi Um Adawi area were generated from different magmatic sources by partial melting and subsequent fractional crystallization. In addition, the crustal contamination/assimilation process has a prominent role in the magmatic evolution of diabase and alkaline lamprophyre dykes.  相似文献   

10.
In this contribution we report the results of an experimental study that investigated equilibrium and fractional crystallization of hydrous, transitional alkaline basalt at low oxygen fugacity, under lower to middle crustal conditions to constrain the generation of subaluminous and peralkaline differentiation products that typically occur in rift systems. The experiments reveal that liquids produced by equilibrium crystallization in the range 0.7–1 GPa cannot cross the subaluminous/peralkaline compositional divide. In contrast, fractional crystallization experiments under isobaric and polybaric conditions approach closer the naturally observed trend from subaluminous to evolved peralkaline products suggesting that polybaric differentiation starting at elevated pressures can indeed lead to the transition from subaluminous to peralkaline derivative liquids. The presence of water in the parental magmas of silicic derivative products is of prime importance for the fractionation equilibria as well as for the mobility of such magmas toward shallow crustal levels.

We suggest that peralkaline magmas in rift environments are indicative for differentiation under relatively low oxygen fugacity conditions in an extensional environment characterized by a high degree of crustal fracturing that allows rapid upward migration of mafic parental magmas and formation of shallow magma reservoirs. Crystallization–differentiation of parental, hydrous transitional alkaline basalt in such reservoirs is controlled by low pressure phase equilibria that typically evolve through early saturation of anorthite-rich plagioclase and suppressed amphibole crystallization resulting in ‘low-alumina’, peralkaline derivative liquids.  相似文献   


11.
The Tenda crystalline massif (northern Corsica) is a fragment of the western Corsica basement involved in the Alpine orogeny. Rhyolite dykes crosscutting the gabbroic complex of Bocca di Tenda (southern sector of the Tenda crystalline massif) show an unusual metamorphic mineral assemblage, defined by jadeite‐bearing (up to 46 mol percentage) aegirine, riebeckite, celadonite‐rich phengite (Si=3.50–3.65 apfu), quartz, albite and K‐feldspar. Jadeite‐bearing aegirine and riebeckite mostly occur as coronas around jadeite‐free aegirine and arfvedsonite, respectively, which both are relics of igneous origin. This metamorphic assemblage reflects the peralkaline compositions, which are characterised by anomalously high contents of SiO2 and Na2O, and negligible CaO and MgO. The evolved rocks of the gabbroic sequence (quartz‐diorites to tonalites) and the surrounding granitoids are characterised by the development of riebeckite/ferroglaucophane, epidote, celadonite‐rich phengite and albite, thus pointing to a metamorphic crystallization in the epidote‐blueschist facies. In all the studied rocks, metamorphic reactions were controlled by fluid‐assisted mass‐transfer through grain boundaries and microfractures. The different mineral assemblages allow the peak P–T metamorphic conditions to be constrained to between 0.8 GPa/300 °C and 1.1 GPa/500 °C. These estimates attest to a geothermal gradient (dT/dP) of 10–13 °C km?1 and indicate that the Tenda crystalline massif was buried to a minimum depth of 27 km during the Alpine orogeny. The blueschist facies recrystallization in the Tenda crystalline massif has been related to the cessation of an eastward‐dipping subduction event.  相似文献   

12.
The origin of ferroan A-type granites in anorogenic tectonic settings remains a long-standing petrological puzzle. The proposed models range from extreme fractional crystallization of mantle-derived magmas to partial melting of crustal rocks, or involve combination of both. In this study, we apply whole-rock chemical and Sm-Nd isotopic compositions and thermodynamically constrained modeling (Magma Chamber Simulator, MCS) to decipher the genesis of a suite of A1-type peralkaline to peraluminous granites and associated intermediate rocks (monzodiorite-monzonite, syenite) from the southwestern margin of the Archean Karelia craton, central Finland, Fennoscandian Shield. These plutonic rocks were emplaced at ca. 2.05 Ga during an early stage of the break-up of the Karelia craton along its western margin and show trace element affinities to ocean island basalt-type magmas. The intermediate rocks show positive εNd(2050 Ma) values (+1.3 to +2.6), which are only slightly lower than the estimated contemporaneous depleted mantle value (+3.4), but much higher than average εNd(2050 Ma) of Archean TTGs (–10) in the surrounding bedrock, indicating that these rocks were essentially derived from a mantle source. The εNd(2050 Ma) values of the peralkaline and peraluminous granite samples overlap (–0.9 to +0.6 and –3.2 to +0.9, respectively) and are somewhat lower than those in the intermediate rocks, suggesting that the mafic magmas parental to granite must have assimilated some amount of older Archean continental crust during their fractionation, which is consistent with the continental crust-like trace element signatures of the granite members. The MCS modeling indicates that fractional crystallization of mantle-derived magmas can explain the major element characteristics of the intermediate rocks. The generation of the granites requires further fractional crystallization of these magmas coupled with assimilation of Archean crust. These processes took place in the middle to upper crust (∼2–4 kbar, ∼7–15 km) and involved crystallization of large amounts of clinopyroxene, plagioclase and olivine. Our results highlight the importance of coupled FC-AFC processes in the petrogenesis of A-type magmas and support the general perception that magmas of A-type ferroan granites become more peraluminous by assimilation of crust. They further suggest that variable fractionation paths of the magmas upon the onset of assimilation may explain the broad variety of A-type felsic and intermediate igneous rocks that is often observed emplaced closely in time and space within the same igneous complex.  相似文献   

13.
The Pine Canyon caldera is a small (6–7 km diameter) ash-flow caldera that erupted peralkaline quartz trachyte, rhyolite, and high-silica rhyolite lavas and ash-flow tuffs about 33–32 Ma. The Pine Canyon caldera is located in Big Bend National Park, Texas, USA, in the southern part of the Trans-Pecos Magmatic Province (TPMP). The eruptive products of the Pine Canyon caldera are assigned to the South Rim Formation, which represents the silicic end member of a bimodal suite (with a “Daly Gap” between 57 and 62 wt.% SiO2); the mafic end member consists primarily of alkali basalt to mugearite lavas of the 34–30 Ma Bee Mountain Basalt. Approximately 60–70% crystallization of plagioclase, clinopyroxene, olivine, magnetite, and apatite from alkali basalt coupled with assimilation of shale wall rock (Ma/Mc = 0.3–0.4) produced the quartz trachyte magma. Variation within the quartz trachyte–rhyolite suite was the result of 70% fractional crystallization of an assemblage dominated by alkali feldspar with subordinate clinopyroxene, fayalite, ilmenite, and apatite. High-silica rhyolite is not cogenetic with the quartz trachyte–rhyolite suite, and can be best explained as the result of  5% partial melting of a mafic granulite in the deep crust under the fluxing influence of fluorine. Variation within the high-silica rhyolite is most likely due to fractional crystallization of alkali feldspar, quartz, magnetite, biotite, and monazite. Lavas and tuffs of the South Rim Formation form A-type rhyolite suites, and are broadly similar to rock series described in anorogenic settings both in terms of petrology and petrogenesis. The Pine Canyon caldera is interpreted to have developed in a post-orogenic tectonic setting, or an early stage of continental rifting, and represents the earliest evidence for continental extension in the TPMP.  相似文献   

14.
The isotopic compositions of Nd and Sr and concentrations of major and trace elements were measured in flows and tuffs of the Woods Mountains volcanic center of eastern California to assess the relative roles of mantle versus crustal magma sources and of fractional crystallization in the evolution of silicic magmatic systems. This site was chosen because the contrast in isotopic composition between Precambrian-to-Mesozoic country rocks and the underlying mantle make the isotope ratios sensitive indicators of the proportions of crustal- and mantle-derived magma. The major eruptive unit is the Wild Horse Mesa tuff (15.8 m.y. old), a compositionally zoned rhyolite ignimbrite. Trachyte pumice fragments in the ash-flow deposits provide information on intermediate composition magma types. Crustal xenoliths and younger flows of basalt and andesite (10 m.y. old) provide opportunities to confirm the isotopic compositions of potential mantle and crustal magma sources inferred from regional patterns. The trachyte and rhyolite have Nd values of -6.2 to -7.5 and initial 87Sr/86Sr ratios mostly between 0.7086 and 0.7113. These magmas cannot have been melted directly from the continental basement because the Nd values are too high. They also cannot have formed by closed system fractional crystallization of basalt because the 87Sr/86Sr ratios are higher than likely values for parental basalt. Both major and trace element variations indicate that crystal fractionation was an important process. These results require that the silicic magmas are end products of the evolution of mantle-derived basalt that underwent extensive fractional crystallization accompanied by assimilation of crustal rock. The mass fraction of crustal components in the trachyte and rhyolite is estimated to be between 10% and 40%, with the lower end of the range considered more likely. The generation of magmas with SiO2 contents greater than 60% appears to be dominated by crystal fractionation with minimal assimilation of upper crustal rocks.  相似文献   

15.
Equilibrium melt trace element contents are calculated from Proterozoic Nain Plutonic Suite (NPS) mafic and anorthositic cumulates, and from plagioclase and orthopyroxene megacrysts. Assumed trapped melt fractions (TMF) <20% generally eliminate all minor phases in most mafic cumulate rocks, reducing them to mixtures of feldspar, pyroxene and olivine, which would represent the high-temperature cumulus assemblage. In anorthosites, TMF <15% generally reduce the mode to a feldspar-only assemblage. All model melts have trace element profiles enriched in highly incompatible elements relative to normal mid-ocean ridge basalt (NMORB); commonly with negative Nb and Th anomalies. Most mafic cumulates yield similar profiles with constant incompatible element ratios, and can be linked through fractional crystallization. High K-La subtypes probably represent crust-contaminated facies. Mafic cumulates are inferred to belong to a tholeiitic differentiation series, variably contaminated by upper and lower crustal components, and probably related to coeval tholeiitic basaltic dyke swarms and lavas in Labrador. Model melts from anorthosites and megacrysts have normalized trace element profiles with steeper slopes than those calculated from mafic cumulates, indicating that mafic cumulates and anorthosites did not crystallize from the same melts. Orthopyroxene megacrysts yield model melts that are more enriched than typical anorthositic model melts, precluding an origin from parental melts. Jotunites have lower K-Rb-Ba-Y-Yb and higher La-Ce than model residues from fractionation of anorthositic model melts, suggesting they are not cosanguineous with them, but provide reasonable fits to evolved mafic cumulate model melts. Incompatible element profiles of anorthositic model melts closely resemble those of crustal melts such as tonalites, with steep Y-Yb-Lu segments that suggest residual garnet in the source. Inversion models yield protoliths similar to depleted lower crustal granulite xenoliths with aluminous compositions, suggesting that the incompatible trace element budget of the anorthosites are derived from remobilization of the lower crust. The similarity of the highly incompatible trace elements and LILE between anorthositic and mafic cumulate model melts suggests that the basalts parental to the mafic cumulates locally assimilated considerable quantities of the same crust that yielded the anorthosites. The reaction between underplating basalt and aluminous lower crust would have forced crystallization of abundant plagioclase, and remobilization of these hybrid plagioclase-rich mushes then produced the anorthosite massifs.  相似文献   

16.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

17.
According to isotopic analysis of rocks of the Reft gabbro–diorite–tonalite complex (Middle Urals), gabbro and related diorite and dikes and vein-shaped bodies of plagiogranitoids, crosscutting gabbro, are similar to the depleted mantle substance in εNd(T) = 8.6–9.7 and εHf(T) = 15.9–17.9. Their model Hf ages are correlated with the time of crystallization. Here, the tonalites and quartz diorites constituting most of the Reft massif are characterized by lower values: εNd(T) = 3.7–6.0, εHf(T) = 11.1–12.7, and T DM values significantly exceeding the age datings. This is evidence that Neoproterozoic crustal rocks were a source of parental magma for these rocks. The primary 87Sr/86Sr ratio in rocks of both groups is highly variable (0.70348–0.70495). The data obtained allow us to reach the conclusion that the Reft gabbro–diorite–tonalite complex was formed as a result of nearly synchronous processes occurring in the crust and the mantle within a limited area.  相似文献   

18.
Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new zircon Hf-O isotopic data and U-Pb dates on these intrusions, together with whole-rock geochemical compositions, to constrain crustal melting processes associated with a mantle plume. The ∼280 Ma Xiaohaizi quartz syenite porphyry and syenite exhibit identical zircon δ18O values of 4.40 ± 0.34‰ (2σ) and 4.48 ± 0.28‰ (2σ), respectively, corresponding to whole-rock δ18O values of 5.6‰ and 6.0‰, respectively. These values are similar to mantle value and suggest an origin of closed-system fractional crystallization from Tarim plume-derived melts. In contrast, the ∼275 Ma Halajun A-type granites have higher δ18O values (8.82–9.26‰) than the mantle. Together with their whole-rock εNd(t) (−2.0–+0.6) and zircon εHf(t) (−0.6–+1.5) values, they were derived from mixing between crust- and mantle-derived melts. These felsic rocks thus record crustal melting above the Tarim mantle plume. At ∼280–275 Ma, melts derived from decompression melting of Tarim mantle plume were emplaced into the crust, where fractional crystallization of a common parental magma generated mafic-ultramafic complex, syenite, and quartz syenite porphyry as exemplified in the Xiaohaizi region. Meanwhile, partial melting of upper crustal materials would occur in response to basaltic magma underplating. The resultant partial melts mixed with Tarim plume-derived basaltic magmas coupled with fractional crystallization led to formation of the Halajun A-type granites.  相似文献   

19.
Rare earth element (REE) concentrations have been determined (by the INAA method) for the c. 2,800 m.y. old Nûk gneisses from the Buksefjorden region, southern West Greenland. Samples include dioritic to granodioritic gneisses and synplutonic mafic dykes; a Malene metagabbro and Qôrqut granite were analysed for comparisons.The early Nûk gneisses, diorites and tonalites, have mildly fractionated REE patterns which are interpreted as resulting from partial melting of garnetbearing amphibolite or granulite. Early Nûk trondhjemitic gneisses possess downward convex patterns with prominent positive Eu anomalies; they may be related to the diorites and tonalites by the separation of hornblende in a residue of partial melting or fractional crystallization. Most of the later Nûk grey gneisses have extremely fractionated linear patterns which were derived from a source very rich in garnet, possibly eclogite. REE patterns measured in the late Nûk Ilivertalik granite complex are mildly fractionated but with a high overall abundance consistent with an origin by partial melting of mafic lower crustal material. Two sets of synplutonic mafic dykes have strongly fractionated patterns similar to those found in alkali basalts.The geochemical variations suggest that the igneous precursors of the Nûk gneisses were not cogenetic, but were derived from widely differing sources.  相似文献   

20.
Dioritic and granodioritic rocks coexist in the Gęsiniec Intrusion in SW Poland showing typical relationships in many mafic–felsic mingling zones worldwide, such as dioritic syn-putonic dykes and microgranular enclaves within granodioritic host. Plagioclase zonation from granodioritic rocks suggests late stage mixing probably with dioritic magma, whereas no magma mixing is recorded in plagioclase from dioritic rocks. The diorites seem to show effects of interaction with evolved, leucocratic melts derived from granodiorite, not with the granodioritic melt itself. We conclude that the diorites’ compositions were modified after their emplacement within the granodioritic host, when the diorites were essentially solidified and injection of evolved melt from granodiorite did not involve marked modification of plagioclase composition. Compositional zoning patterns of plagioclase in diorites can be modeled by closed system fractional crystallization interrupted by resorption induced probably by decompression. Granodioritic plagioclase seems to be affected by the same resorption event. Plagioclase that crystallized in dioritic magma before the resorption does not record interaction between dioritic and granodioritic magmas, suggesting that both magmas evolved separately. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号