首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Basic volcanic rocks from the West Nain area of the Urumieh–Dokhtar Magmatic Assemblage demonstrate significant subduction-related geochemical characteristics; these along with the new age data obtained for the volcanic rocks shed new light on the geodynamic evolution of the Iranian segment of Alpine–Himalayan orogeny. The late Oligocene (26.5 Ma) high-Nb basic volcanic rocks are likely to represent a transient rather enriched asthenospheric mantle underlying the otherwise dominantly Eocene–early Oligocene West Nain island arc. Lithospheric mantle geochemical signatures of the low-Zr volcanic rocks (20.6 Ma) and high-Th volcanic rocks (19.7 Ma) imply replacement of the underlying mantle. The substitution of asthenospheric mantle by a lithospheric mantle wedge might have been associated with – or perhaps caused by – an increase in the subduction rate. Culmination of the West Nain magmatism into slab melting that produced the early Miocene (18.7 Ma) adakitic rocks is compatible with subsequent ascent that triggered slab decompression melting.  相似文献   

2.
埃达克质岩的构造背景与岩石组合   总被引:6,自引:1,他引:5  
本文介绍了埃达克质岩形成的构造背景与岩石组合。埃达克质岩可以形成于不同的构造背景并与不同类型的岩石同时出现:1)火山弧环境中常出现埃达克质岩一高镁安山岩-富Nb玄武质岩组合,它的形成可能与板片熔融以及熔体一地幔橄榄岩的相互作用有关;2)大陆活动碰撞造山带环境(如羌塘)中埃达克质岩常与同期钾质或橄榄玄粗质岩共生,这可能与俯冲陆壳熔融和俯冲陆壳熔体交代的地幔橄榄岩熔融有关;3)造山带伸展垮塌环境(如大别山)中埃达克质岩会伴随有镁铁质一超镁铁质岩浆出露,增厚下地壳产生埃达克质岩浆后的榴辉岩质残留体拆沉进入地幔,与地幔橄榄岩的混合可能形成后期镁铁质一超镁铁质岩浆的源区;4)大陆板内伸展环境中埃达克质岩常与同期橄榄玄粗质的岩石共生,增厚、拆沉下地壳,以及富集地幔的熔融或岩浆混合在岩石的成因中发挥了重要作用。  相似文献   

3.
班康姆铜金矿床是近年来新发现的大型铜金矿床。前人研究初步表明研究区成矿作用与古特提斯洋壳俯冲消减所产生的岩浆作用密切有关,但是缺乏岩石地球化学证据。笔者于研究区地表、钻孔采集了13件火山岩-侵入岩新鲜岩石,开展了主量元素、微量元素、稀土元素分析测试。研究表明该区安山质-侵入杂岩具有岛弧钙碱性火山岩的地球化学特征,构造环境判别图显示该套岩石属于大洋弧环境,形成于大洋消减带,与洋壳板片俯冲有关。安山质-侵入杂岩来源于地幔楔,并经历了结晶分异作用,而煌斑岩形成于板片消减而富集的地幔部分熔融。通过与黎府构造带矿床稀土、微量元素特征对比,证实班康姆矿区与Chatree矿区火山岩及金矿床形成于同一期构造岩浆成矿作用,进一步表明了黎府构造岩浆带在晚二叠世—早三叠世发生了一次重要的区域成矿作用。  相似文献   

4.
张利  王林森  周炼 《地球科学》2001,26(1):18-24
对桐柏北部加里东期桃园岩体和黄岗杂岩体的地球化学研究表明, 桃园岩体形成于与洋壳消减作用有关的弧后盆地环境, 与二郎坪基性火山岩具有相同的岩浆来源.黄岗杂岩岩浆中含有一定比例的陆壳物质, 该物质来自俯冲板片上陆壳沉积物的再循环, 与二郎坪弧后盆地向北的俯冲消减有密切联系.   相似文献   

5.
冈底斯中段林子宗火山岩岩石地球化学特征   总被引:4,自引:0,他引:4  
广泛发育在冈底斯岩浆岩带中的林子宗火山岩及其与下伏地层间的区域不整合提供了印度-亚洲大陆碰撞的重要证据.谢通门地区的林子宗火山岩早期以中基性-中性岩为主,夹少量流纹质凝灰岩,晚期以流纹质火山岩为主.岩石学和地球化学研究表明,这套火山岩早期以钙碱性为主,带有较多陆缘火山岩特征,中期开始出现标志陆内活动的钾玄岩,晚期更多地显示了加厚陆壳条件下火山岩的特点,记录了由新特提斯俯冲消减末期过渡到印度-亚洲大陆碰撞的信息.中基性岩浆来源于俯冲带的地幔源区,长英质岩浆形成于加厚地壳的部分熔融.结合区域同位素年龄资料,可以认为林子宗火山岩中高钾流纹质火山岩是印度-亚洲大陆碰撞阶段陆壳缩短加压升温引起部分熔融的产物.  相似文献   

6.
A. Yu. Martynov 《Petrology》2013,21(5):471-488
Geochemical data obtained on volcanic rocks produced during the early evolutionary stages in Kunashir Island provide insight into certain important aspect of the evolution of the subduction system. The mafic lavas of all age intervals exhibit clearly pronounced across-arc geochemical zoning, which implies that these rocks were produced in the environment of a subducted oceanic slab. The high Ba/Th and U/Th ratios of basalts from the frontal zones suggest that an important role in magma generation was played by a low-temperature aqueous fluid. The arc lavas of the Early Miocene, Pliocene, and Pliocene-Pleistocene episodes in the evolution of the island arc system provide evidence of the melting of subducted sediments, which testifies, when considered together with the calculated P-T conditions under which the high-Mg basalts were derived, that backarc tectono-magmatic processes affected subduction-related magmatic generation. Active mantle diapirism and volcanic activity in the opening Kurile Basin resulted in the heating of the suprasubduction mantle in the rear zone, the involvement of the upper sedimentary layer of the oceanic slab in the process of melting, and the eventual generation of basaltic magmas with unusual geochemical characteristics.  相似文献   

7.
Late Carboniferous (300–290 Ma) calc-alkaline basalts, andesites, and rhyolites typical of volcanic arc settings occur in the intermontane Saar-Nahe basin (SW Germany) within the Variscan orogenic belt. The volcanic rock suite was emplaced under a regime of tensional tectonics during orogenic collapse and its origin has been explained by melting of mantle and crust in the course of limited lithospheric rifting. We report major, trace and rare-earth-element data (REE), and Nd-Pb-Sr-O isotope ratios for a representative sample suite, which are fully consistent with an origin closely related to plate subduction. Major and trace element data define continuous melt differentiation trends from a precursor basaltic magma involving fractional crystallization of olivine, pyroxene, plagioclase, and magnetite typical of magma evolution in a volcanic arc. This finding precludes an origin of the andesitic compositions by mixing of mafic and felsic melts as can be expected in anorogenic settings. The mafic samples have high Mg numbers (Mg# = 65–73), and high Cr (up to 330 ppm) and Ni (up to 200 ppm) contents indicating derivation from a primitive parental melt that was formed in equilibrium with mantle peridotite. We interpret the geochemical characteristics of the near-primary basalts as reflecting their mantle source. The volcanic rocks are characterized by enrichment in the large ion lithophile elements (LILE), negative Nb and Ti, and positive Pb anomalies relative to the neighboring REE, suggesting melting of a subduction-modified mantle. Initial Nd values of −0.7 to −4.6, Pb, and 87Sr/86Sr(t) isotope ratios for mafic and felsic volcanics are similar and indicate partial melting of an isotopically heterogeneous and enriched mantle reservoir. The enrichment in incompatible trace elements and radiogenic isotopes of a precursor depleted mantle may be attributed to addition of an old sedimentary component. The geochemical characteristics of the Saar-Nahe volcanic rocks are distinct from typical post-collisional rock suites and they may be interpreted as geochemical evidence for ongoing plate subduction at the margin of the Variscan orogenic belt not obvious from the regional geologic context. Received: 3 August 1998 / Accepted: 2 January 1999  相似文献   

8.
俯冲型和碰撞型含矿斑岩地球化学组成的差异   总被引:2,自引:2,他引:0  
Cu-Mo-Au含矿斑岩不仅可以形成于与洋壳俯冲相联系的弧环境,而且也产于碰撞造山带内。通过对比俯冲型和碰撞型含矿斑岩的地球化学特征,发现它们特别在微量元素上具有较大差别,暗示它们有着不同的物源区组成或形成机制。同冈底斯带碰撞型含矿斑岩相比,太平洋东岸俯冲型含矿斑岩有着明显高的HREE和Y含量,低的Sr/Y、(La/Yb)N以及(Dy/Yb)N比值,表明其物质源区不含或含有少量的石榴子石并可能以角闪石组成为主。统计发现这些俯冲型含矿斑岩部分样品具有埃达克岩地球化学特征,但大部分样品却显示出具有与正常岛弧系列火山岩相似的特征,它们很可能是板片释放流体交代地幔楔形成的熔体并在后期经历MASH过程的产物。冈底斯带碰撞型含矿斑岩具有典型埃达克岩地球化学特征,指示其形成条件达到了石榴子石相变,可能形成于增厚的下地壳,其物质源区很可能与前期的洋壳俯冲有着密切的联系。普朗-雪鸡坪含矿斑岩具有与俯冲型含矿斑岩十分相似的地球化学特征,它们有可能是西向俯冲的甘孜-理塘洋发生断离,进而诱发前期俯冲流体交代的富集地幔楔发生部分熔融的产物,而并非是俯冲洋壳直接发生部分熔融的产物。  相似文献   

9.
The results of ICP-MS trace-element (LILE, HFSE, REE) study of the Late Mesozoic–Early Cenozoic volcanic rocks of the Okhotsk and Japan seas and geochronological K-Ar dating of the Eocene volcanic rocks are presented. Specifics of volcanism developed on submarine rises of these seas was characterized for the first time, and magma sources and geodynamic settings of the volcanic complexes predating the formation of the deep-water basins were determined. It is established that the Late Mesozoic magmas were formed in a subduction setting from spinel peridotites of suprasubduction mantle wedge, which was metasomatically reworked by aqueous fluids that were released by dehydration of sedimentary layer of subducting oceanic plate. This follows from the elevated concentrations of H2O, alkalis, potassium, LILE and LREE, and lowered HFSE (including Ta-Nb minimum) and HREE contents, at lowered Sm/Yb, Nb/Ta, Nb/Y and elevated La/Nb, Ba/La, and Zr/Y ratios. Eocene adakite-like volcanic rocks were identified for the first time in the Sea of Okhotsk. They vary from andesitic to more felsic compositions with elevated MgO (>4%) and elevated La/Yb (>14) and Sr/Y (50–60) ratios. Identification of adakite-like volcanic rocks serves as evidence in support of the transform continental-margin (or plate sliding) setting, which is characterized by breaking apart of subduction slab and formation of slab “windows” acting as pathways for the transfer of asthenospheric mantle into continental lithosphere. New geochemical data on the Late Mesozoic–Early Cenozoic volcanic rocks of the Okhotsk and Japan seas and analysis of literature data were used to distinguish two geodynamic settings within these seas: subduction and transform margin. Similar settings operated at that time in the adjacent continental- margin volcanic belts (Akinin and Miller, 2011; Martynov and Khanchuk, 2013; et al.).  相似文献   

10.
ABSTRACT

Appinite complexes preserve evidence of mantle processes that produce voluminous granitoid batholiths. These plutonic complexes range from ultramafic to felsic in composition, deep to shallow emplacement, and from Neo-Archean to Recent in age. Appinites are a textural family characterized by idiomorphic hornblende in all lithologies, and spectacular textures including coarse-grained mafic pegmatites, fine-grained ‘salt-and-pepper’ gabbros, as well as planar and linear fabrics. Magmas are bimodal (mafic-felsic) in composition; ultramafic rocks are cumulates, intermediate rocks are hybrids. Their geochemistry is profoundly influenced by a mantle wedge extensively metasomatized by fluids/magmas produced by subduction. Melting of spinel peridotite sub-continental lithospheric mantle (SCLM) produces appinites whose geochemistry is indistinguishable from coeval low-K calc-alkalic arc magmatism. Coeval felsic rocks within appinite complexes and adjacent granitoid batholiths are crustal magmas. When subduction terminates, asthenospheric upwelling (e.g. in a slab window, or in the aftermath of slab failure) induces melting of metasomatized garnet SCLM to produce K-rich sho shonitic magmas enriched in large ionic lithophile and light relative to heavy rare earth elements, whose asthenospheric component can be identified by Sm-Nd isotopic signatures. Coeval late-stage Ba-Sr granitoid magmas have a ‘slab failure’ geochemistry, resemble TTG and adakitic suites, and are formed either by fractionation of an enriched (shoshonitic) mafic magma, or high pressure melting of a meta-basaltic protolith either at the base of the crust or along the upper portion of the subducted slab. Appinite complexes may be the crustal representation of mafic magma that underplated the crust for the duration of arc magmatism. They were preferentially emplaced along fault zones around the periphery of the granitoid batholiths (where their ascent is not blocked by overlying felsic magma), and as enclaves within granitoid batholiths. When subduction ceases, appinite complexes with a more pronounced asthenospheric component are preferentially emplaced along active faults that bound the periphery of the batholiths.  相似文献   

11.
The conditions of magma formation were reconstructed on the basis of characteristic features of the evolution of the Kurile-Kamchatka island-arc system, structural and chemical zoning patterns of volcanic complexes, and available published data on peridotite and basalt melting and stability of hydrous minerals. It was shown that the volcanic arc of the Sredinnyi Range of Kamchatka occurs now at the final stage of subduction, whereas subduction beneath the volcanic arc of eastern Kamchatka began at the end of the Miocene, after its jump into the present-day position. The volcanism of Southern Kamchatka and the Kuriles has occurred under steady-state subduction conditions since the Miocene and is represented by typical island-arc magmas. The latter are generated in a mantle wedge, where the melting of water-saturated peridotite occurs in a high-temperature zone under the influence of fluid. The formation of the frontal and rear volcanic zones was related to the existence of two levels of water release from various hydrous minerals. During the initial and final stages of subduction, as well as in the zone of Kamchatka—Aleutian junction, partial melting is possible in the upper part of the subducted slab in contact with a hotter mantle material compared with the mantle in a steady-state regime. This is responsible for the coexistence of predominant typical island-arc rocks, rocks with intraplate geochemical signatures, and highly magnesian rocks, including adakites.  相似文献   

12.
Hadi Omrani 《Petrology》2018,26(1):96-113
Cretaceous to Eocene plutonic and volcanic rocks of the Sabzevar zone have an adakite characteristic with high Sr/Y ratio, depleted HFSE and enriched LILE features. Most of the Sabzevar adakites are high silica adakites with low Ni, Cr and Co contents. LREE/HREE ratio is high, while K2O content is low to intermediate. Adakites in the Sabzevar zone are exposed in two areas, which are named southern and northern adakites here. The combination of Sr, Nd and Pb isotopic data with major and trace elements indicates that the adakitic rocks are formed by partial melting of the Sabzevar oceanic slab. Nb/Ta content of the samples indicates that the adakitic magmas were generated at different depth in the subduction system. Dy/Yb ratios of adakitic samples indicate positive, negative and roughly flat patterns for different samples, suggesting garnet and amphibole as residual phases during slab-derived adakitic magma formation. Sabzevar adakites emplaced during late to post-kinematic events. Sabzevar oceanic basin demised during a northward subduction by central Iranian micro-continents (CIM) and Eurasia plate convergence.  相似文献   

13.
大兴安岭是中国东北部陆相火山岩发育的地区之一,其不仅分布广泛,而且空间岩相组合变化较大、成因复杂。笔者对大杨树火山盆地西缘喷发就位在花岗岩带的小莫尔可地区中生代火山岩的地质、岩相学、年代学、元素和Hf同位素地球化学进行了研究。结果表明,该区出露火山岩可划分3个阶段,第一阶段主要为英安质火山碎屑岩夹英安岩组合,呈爆发式火山喷发特征;第二阶段为玄武质粗面安山岩、粗面安山岩组合,呈溢流式火山喷发特征;第三阶段是玄武粗面安山质熔结火山碎屑岩(部分含角砾)。各阶段代表性火山熔岩以及熔结火山碎屑岩的元素地球化学特征揭示:均为富碱(w(Na_2O+K_2O)=4.88%~7.12%),属高钾钙碱性系列;具有相似的痕量元素地球化学分馏特征,即明显富集Ba、K、LRRE等大离子亲石元素,亏损Nb、Ta、Ti、HREE等高场强元素;稀土元素分馏程度中等(LREE/HREE=8.4~8.5)、Eu负异常不明显(δEu为0.91~1.02)。这些特征表明它们是同源岩浆房结晶分异演化的产物,岩浆源区性质呈现地幔与壳幔混合过渡类型的属性,或呈现E-MORB性质的源区或交代洋壳性质的源区。鉴于获得的英安质岩屑晶屑凝灰岩(HSY-1)和玄武粗面安山质岩屑晶屑熔结凝灰岩(P2121)单颗粒锆石U-Pb同位素定年分别为(124.8±1.0)、(123.3±1.3)Ma,ε_(Hf)(t)为1.7~9.7、T_(DM)=705~407 Ma、T_(DM)~C=1 464~748Ma,并结合区域地球动力学研究进展,可进一步得出:火山作用背景应属于中生代古太平洋板块向中国东部大陆俯冲的大陆边缘岩浆弧环境,适值东北地区大规模岩浆底侵、岩石圈拆沉作用的峰期(约120 Ma),初始岩浆应是古太平洋板块深俯冲作用过程形成的埃达克质岩浆,而呈现埃达克质岩浆与岛弧性质的过渡岩石学、地球化学特征,可能是在岩浆底侵、岩石圈拆沉过程与地壳物质发生一定程度的混染作用;并从成矿元素的相容性角度确认该期岩浆作用具有提供Mo、Cu和Ag成矿流体的可能。  相似文献   

14.
The volcanic rock series on the Fildes Peninsula is the product of the later subduction of the Pacific platebeneath the Antarctic plate. It consists mainly of basalt, basaltic andesite and andesite with minor dacite. Itsisotopic ages range from 64.6±1 to 43±2 Ma, belonging to Palaeocene to Eocene. Volcanism in the area maybe divided into two phases. The contents of major oxides, rare earth elements (REE) and trace elements in vol-canic rocks formed in different phases show regular changes, which are mainly related to the rock associationsof these phases. Isotope geochemical studies indicate that the primitive magma in the area originating by par-tial melting in the upper mantle underwent fractional crystallization and ascended to the high-level (shallow)magma chamber. Before eruption the primitive basalt-andesitic magma was subjected to differentiation in thehigh-level magma chamber, forming zones of derivative magmas of different compositions. In various phasesmagma-conducting faults experienced periodic extension and cut through various derivative magma zones indifferent parts of the peninsula, leading to the eruption of magmas of different compositions on the surface andthe formation of volcanic rock associations of corresponding compositions.  相似文献   

15.
We present new zircon U–Pb–Hf and whole-rock geochemical data for volcanic rocks along the eastern margin of the Xing'an Massif of NE China in order to further our understanding of the history of subduction towards the SE and the spatial extent of the Mongol–Okhotsk tectonic regime. Zircon U–Pb dating indicates that the Triassic volcanism in the Xing'an Massif occurred in two stages during the Middle (ca. 242 Ma) and Late (ca. 223–228 Ma) Triassic. Middle Triassic basaltic andesites in the Heihe area have an affinity to arc-type volcanic rocks. The zircon εHf(t) values (+ 8.5 to + 12.7) suggest that the primary magma was generated by the partial melting of a relatively depleted mantle wedge that had been metasomatized by subduction-related fluids. The Late Triassic andesites in the Handaqi area exhibit geochemical affinities to high-Mg adakitic andesites. Their zircon εHf(t) values (+ 11.5 to + 14.5) and TDM2 ages (313–484 Ma) indicate that their primary magma was derived from the partial melting of a young subducted oceanic crust, followed by interaction with melts derived from mantle peridotite. The Late Triassic basaltic andesites, andesites, and dacites in the Zhalantun–Moguqi area have features similar to those of igneous rocks formed in subduction zones. Their zircon εHf(t) values (+ 8.4 to + 15.4) and TDM1 ages (260–542 Ma) indicate that their primary magma was derived from the partial melting of a depleted mantle wedge that had been metasomatized by subduction-related fluids. These data suggest that the Triassic volcanic rocks of the Xing'an Massif formed in an active continental margin setting associated with the southward subduction of the Mongol–Okhotsk oceanic plate towards the SE. We conclude that the Mongol–Okhotsk tectonic regime extended at least as far as the eastern margin of the Xing'an Massif, and that the tectonism spanned the period from the late Permian to early Early-Cretaceous.  相似文献   

16.
We present a comprehensive geochemical data set for a suite of back-arc alkaline volcanic rocks from James Ross Island Volcanic Group (JRIVG), Antarctic Peninsula. The elemental and isotopic (Sr, Nd, Pb and Li) composition of these Cenozoic basalts emplaced east of the Antarctic Peninsula is different from the compositions of the fore-arc alkaline volcanic rocks in Southern Shetlands and nearby Bransfield Strait. The variability in elemental and isotopic composition is not consistent with the JRIVG derivation from a single mantle source but rather it suggests that the magma was mainly derived from a depleted mantle with subordinate OIB-like enriched mantle component (EM II). The isotopic data are consistent with mantle melting during extension and possible roll-back of the subducted lithosphere of the Antarctic plate. Magma contamination by Triassic–Early Tertiary clastic sediments deposited in the back-arc basin was only localized and affected Li isotopic composition in two of the samples, while most of the basalts show very little variation in δ7Li values, as anticipated for “mantle-driven” Li isotopic composition. These variations are difficult to resolve with radiogenic isotope systematics but Li isotopes may prove sensitive in tracking complex geochemical processes acting through the oceanic crust pile, including hydrothermal leaching and seawater equilibration.  相似文献   

17.
Melting of subducting oceanic lithosphere and associated melt-mantle interactions in convergent plate margins require specific geodynamic environment that allows the oceanic slab to be abnormally heated. Here we focus on the Early Mesozoic mafic rocks and granite porphyry, which provide insights into slab melting processes associated with final closure of the Paleo-Asian Ocean. The granite porphyry samples are calc-alkaline and distinguished by high Sr contents, strong depletion of heavy rare earth elements, resulting in high (La/Yb)N and Sr/Y ratios, and negligible Eu anomalies. Based on their high Na2O and MgO, low K2O contents, positive εHf(t) and εNd(t) and low (87Sr/86Sr)i values, we propose that the granite porphyry was likely derived from partial melting of subducting Paleo-Asian oceanic crust. The Nb-enriched mafic rocks are enriched in Rb, Th, U, Pb and K, and depleted in Nb, Ta, Ba, P and Ti, corroborating a subduction-related origin. Their heterogeneous Sr-Nd-Hf-O isotopic compositions and other geochemical features suggest that they were likely derived from partial melting of peridotitic mantle wedge interacted with oceanic slab-derived adakitic melts. Trace element and isotope modeling results and elevated zircon δ18O values suggest variable subducting sediments input into the mantle wedge, dominated by terrigenous sediments. Synthesizing the widely-developed bimodal rock associations, conjugated dikes, thermal metamorphism, tectonic characteristics, paleomagnetic constraints, and paleogeographical evidence along the Solonke-Changchun suture zone, we identify a slab window triggered by slab break-off, which accounts for slab melting and formation of the Nb-enriched mafic rocks and associated adakitic granite porphyry in southeastern Central Asian Orogenic Belt.  相似文献   

18.
Summary Vesuvius and Stromboli are two active and extensively studied volcanoes that traditionally have been considered as having different styles of eruption, rock composition and tectonic setting. Data reveal close compositional affinities between these two volcanoes. The abundant 13–15 Ka old Stromboli leucite-tephritic rocks have radiogenic isotope signatures, and abundances and ratios of incompatible elements with the exception of Rb and K, which are identical to those of Vesuvius. The Phlegraean Fields also show close affinities to these volcanoes. The similarity between Stromboli leucite-tephrites and Vesuvius rocks cannot be the result of low pressure processes, given the differences between the two volcanoes in terms of structural features, eruptive behaviour and type of basement rocks. Instead, the observed geochemical signatures are likely to represent a primary magma composition and reveal a common homogeneous source for the two suites. The higher K and Rb contents in the Vesuvius rocks suggest either selective enrichment during magma ascent or a role for phlogopite melting during mantle anatexis. The most primitive rocks from Vesuvius, Phlegraean Fields and Stromboli reveal intermediate compositions between arc and intraplate volcanics. It is suggested that the mantle sources beneath these volcanoes consist of a mixture of intraplate- and slab-derived components. Intraplate material was probably provided by inflow of asthenosheric mantle into the wedge above the subducting Ionian Sea plate, either from the Apulian plate and/or from the Tyrrhenian Sea region. Fluids or melts released from the sinking slab and associated sediments generated metasomatic modification of the intraplate material, whose melting gave rise to the Stromboli, Vesuvius and Phlegraean Fields magmas. The present study demonstrates how comparative investigations of various volcanic centres from southern Italy allow clarification of a number of problems involving magma genesis and evolution, composition of mantle sources and geodynamic significance, which have been long debated and are difficult to solve if individual volcanoes are considered in isolation. Received July 20, 2000; revised version accepted March 19, 2001  相似文献   

19.
酸性火山岩是构成白银厂火山穹隆的主体核心 ,也是黑矿型白银厂式矿床的容矿岩石。本文从酸性火山岩的岩相学特征、主要元素、微量元素、稀土元素地球化学研究入手 ,对酸性火山岩的分类及系列划分、微量元素和稀土元素地球化学及其形成的构造环境进行了深入的探讨。认为该区酸性火山岩主要由流纹岩和英安岩组成 ,属低钾系列和钙碱性系列。地球化学特征表明 ,它的形成是由板块俯冲至深处脱水 ,致使先存下地壳含水辉长质岩石部分熔融而成。其成岩环境为火山弧环境。  相似文献   

20.
We present new whole rock trace element and Pb-isotope data for a suite of Neogene adakitic rocks that formed during the post-collisional stage of the India-Asia collision in an east-west- trending array along the Yalu Tsangpo suture. Compared to classic ‘adakites’ that form along certain active convergent plate margins, the Tibetan adakitic rocks show even stronger enrichment in incompatible elements (i.e. Rb, Ba, Th, K and LREEs) and even larger variation in radiogenic (Pb, Sr, Nd) isotope ratios. Tibetan adakitic rocks have extraordinarily low HREE (Yb: 0.34–0.61 ppm) and Y (3.71–6.79 ppm), high Sr/Y (66–196), high Dyn/Ybn and Lan/Ybn. They show strong evidence of binary mixing both in isotopic space (Sr-Nd, common Pb, thorogenic Pb) and trace element systematics. The majority of the adakitic rocks in south Tibet, including published and our new data, have variational Mg# (0.32–0.70), clear Nb (and HFSE) enrichment, the lowest initial 87Sr/86Sr and 206Pb/204Pb ratios, and the highest 144Nd/143Nd ratios of all Neogene volcanic rocks in south Tibet. These results indicate an involvement of slab melts in petrogenesis. Major and trace element characteristics of the isotopically more enriched adakites are compatible with derivation from subducted sediment but not with assimilation of crustal material. Thus, the south Tibetan adakitic magmas are inferred to have been derived from an upper mantle source metasomatised by slab-derived melts. An interesting observation is that temporally coeval and spatially related lamproites could be genetically related to the adakitic rocks in representing partial melts of distinct mantle domains metasomatised by subducted sediment. Our favoured geodynamic interpretation is that along-strike variation in south Tibetan post-collisional magma compositions may be related to release of slab melts and fluids along the former subduction zone resulting in compositionally distinct mantle domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号