首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Twelve methods to determine axial pile capacity directly based on cone penetration test (CPT) and piezocone penetration test (CPTU) data are presented, compared and evaluated. Analyses and evaluation were conducted on three types of piles of different size and length. All the tested piles have failed at the end of static load test. Both the CPT methods and the CPTU methods were used to estimate the load bearing capacities of the investigated piles (Qp). The static load test was performed to determine the measured load bearing capacities (Qm). The pile capacities determined through different methods were compared with the measured values obtained from the static load tests. Two criteria were selected as bases of evaluation: the best fit line for Qp versus Qm and the arithmetic mean and standard deviation for the ratio Qp/Qm. Results of the analyses showed that the best methods for determining pile capacity are the two CPTU methods. Furthermore, the CPTU method is simple, easy to apply, and not influenced by the subjective judgements of operating staff. Therefore, it is quite suitable for the application in pile engineering practice.  相似文献   

2.
Many state departments of transportation and consulting firms continue to use dynamic formulas because they are simple and inexpensive as compared to the preferred dynamic loading test with signal matching. Efforts to reduce the error and uncertainty associated with dynamic formulas are therefore warranted until dynamic monitoring becomes standard for every driven pile. However, dynamic formulas calibrated to national test pile databases have indicated inaccuracy and high uncertainty in the capacity prediction using dynamic formulas. A region-specific dynamic load test database was used to assess the accuracy and uncertainty in the Janbu, Danish and FHWA Gates formulas, recalibrate the equations for local conditions (construction practice, geology) and to generate resistance factors for use with Load and Resistance Factor Design (LRFD). Following recalibration, the capacity predictions became more accurate, and an observed dependence of the accuracy on the magnitude of resistance was eliminated for most driving conditions (e.g. end-of-driving, restrike). Previously reported static load test data were used to incorporate the transformation error associated with using the dynamic capacity to predict an equivalent static capacity. Resistance factors for use in Load and Resistance Factor Design (LRFD) were developed in consideration of American Association of State Highway and Transportation Officials–recommended load statistics and target reliability indices. Efficiency factors were used to assess the economic performance of each dynamic formula. Comparison of the accuracy and uncertainty of the recalibrated equations to a nationwide calibration illustrated the advantage of using a geologic-specific database for the calibration of resistance factors.  相似文献   

3.
Full-scale load tests were carried out on six instrumented large diameter bored, cast in-situ piles formed in Mercia mudstone, as part of the design of a new Viaduct in Cardiff, UK. In this paper, the results from six test piles and extensive data from 218 ground investigation boreholes are systematically processed in order to study the load transfer and resistance mechanisms in Mercia mudstone. Data from strain gauges embedded in each pile are first analysed to calibrate the load-deformation relationship of each pile as-built, taking into account (i) the non-linearity of concrete and (ii) the effect of partial steel encasement on pile stiffness at various levels. The shaft and base capacity of the piles are each predicted using 10 calculation methods belonging to the four basic categories: (i) Undrained analysis, (ii) Drained analysis, (iii) Mixed approach and (iv) Empirical correlation. It is found that the shaft capacity prediction methods are moderately consistent. The standard deviations of the ratio Q sp/Q sm of predicted to observed shaft capacity lies in the range 0.06–0.24. However, 8 of these methods are over-conservative, giving Q sp/Q sm values in the range 0.29–0.67. The remaining two methods yield Q sp/Q sm = 1.01 and 1.49. In contrast, the prediction methods for base capacity are found to be much less consistent. The ratio Q bp/Q bm of predicted to measured base capacity falls in the interval 0.52–1.93, with corresponding standard deviations of 0.16–0.82. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In this paper, the CPT-based predicted ultimate pile resistances (Rp) were compared with the measured pile resistances (Rm) at different elapsed time for the piles driven into saturated soft clays where piles displayed significant set-up effect. The measured pile resistances were based on 115 restrike records collected from 95 production piles, and 74 records of 9 tested piles. The predicted ultimate pile resistances were calculated from the LCPC, the Schmertmann, and the de Ruiter–Beringen methods, respectively. With the significant pile set-up effect taken into account, the relationship between measured resistances and predicted capacities at different times after pile installation were investigated. The ratios of the measured pile resistances to the predicted capacities scattered in a large spectrum. The ratios fluctuated and stayed within a range of 0.6–1.6 for different CPT methods since end of initial driving until more than 2 months after pile installation. Plots of the ratios versus the predicted pile capacities using different CPT methods have revealed that the ratio (Rm/Rp) presented a strong dependence on the predicted capacities. Great research efforts have been devoted to the analyses of the ratios of the 24-h measured resistance to the predicted capacity based on different CPT methods, in an attempt to find a feasible empirical correlation. It is found that a simple linear relationship exists between the quad root of the ratio and the predicted capacity. The developed empirical equations will give pile foundation engineers an insight into the ultimate resistances of driven piles demonstrating significant pile set-up effects. Pile set-up makes pile resistances grow with time, and it might be one of the reasons that cause the frequently reported large discrepancy between calculated static capacity and measured resistance at a certain time after pile installation.  相似文献   

5.
Pile driving formulas, which directly relate the pile set resulting from a hammer blow to the static load capacity of the pile, are often used to decide whether a pile will have the required design capacity. However, existing formulas do not consider soil or pile type, and do not, in general, reliably predict pile capacity. In this paper, an advanced model for dynamic pile driving analysis was used to develop accurate pile driving formulas. The proposed driving formulas are validated through well-documented case histories. Comparisons of predictions from the proposed formulas with results from static and dynamic load tests show that they produce reasonably accurate predictions of pile capacity based on pile set observations.  相似文献   

6.

This paper presents the analyses of twelve prestressed concrete (PSC) instrumented test piles that were driven in different bridge construction projects of Louisiana in order to develop analytical models to estimate the increase in pile capacity with time or pile setup. The twelve test piles were driven mainly in cohesive soils. Detailed soil characterizations including laboratory and in situ tests were conducted to determine the different soil properties. The test piles were instrumented with vibrating wire strain gauges, piezometers, pressure cells that were monitored during the whole testing period. Several static load tests (SLTs) and dynamic load tests were conducted on each test pile at different times after end of driving (EOD) to quantify the magnitude and rate of setup. Measurements of load tests confirmed that pile capacity increases almost linearly with the logarithm of time elapsed after EOD. Case pile wave analysis program was performed on the restrikes data and was used along with the load distribution plots from the SLTs to evaluate the increase in skin friction capacity of individual soil layers along the length of the piles. The logarithmic linear setup parameter “A” for unit skin friction was calculated of the 70 individual clayey soil layers and was correlated with different soil properties such as undrained shear strength (Su), plasticity index, vertical coefficient of consolidation (cv), over consolidation ratio and sensitivity (St). Nonlinear multivariable regression analyses were performed, and three different empirical models are proposed to predict the pile setup parameter “A” as a function of soil properties. For verification, the subsurface soil conditions and setup information for additional 18 PSC piles collected from local database were used to compare the measured versus predicted “A” parameters from the proposed models, which showed good agreement.

  相似文献   

7.
An interactive computer program “GLAMCPT” is developed for application in soil profiling and prediction of pile load capacity using cone penetration test (CPT) and laboratory soil test results. GLAMCPT calculates pile capacity according to 10 selected methods from European design codes, refereed international publications and recommendations of professional institutions. To demonstrate the capabilities of the program, a database of comprehensive ground investigation and full-scale pile tests in sand, at a Belgian site, is analysed using GLAMCPT. The database comprises 11 static tests and 12 dynamic tests on piles of different construction techniques, including driven pre-cast concrete piles and screwed cast in-situ piles, installed using 5 different procedures. Prior to pile installation, CPTs were carried out at each proposed pile location. Comparison of GLAMCPT predictions with the observed pile capacities reveals that the most accurate of the existing methods yields an average, μ, of predicted to observed pile head capacity [Puh(p)/Puh(m)] equal to 0.94. The most consistent method produces a coeffcient of variation (COV) of [Puh(p)/Puh(m)] equal to 0.1 and ranking index (RI) of 0.08. Parametric studies have been carried out using GLAMCPT to formulate an improved predictive method, which yielded: μ = 0.99, COV = 0.07 and RI = 0.04.  相似文献   

8.
Simultaneous competitive adsorption behavior of Cd, Cu, Pb and Zn onto nine soils with a wide physical–chemical characteristics from Eastern China was measured in batch experiments to assess the mobility and retention of these metals in soils. In the competitive adsorption system, adsorption isotherms for these metals on the soils exhibited significant differences in shape and in the amount adsorbed. As the applied concentration increased, Cu and Pb adsorption increased, while Cd and Zn adsorption decreased. Competition among heavy metals is very strong in acid soils with lower capacity to adsorb metal cations. Distribution coefficients (K dmedium) for each metal and soil were calculated. The highest K dmedium value was found for Pb and followed by Cu. However, low K dmedium values were shown for Zn and Cd. On the basis of the K dmedium values, the selectivity sequence of the metal adsorption is Pb > Cu > Zn > Cd and Pb > Cu > Cd > Zn. The adsorption sequence of nine soils was deduced from the joint distribution coefficients (K dΣmedium). This indicated that acid soils with low pH value had lower adsorption capacity for heavy metals, resulting in much higher risk of heavy metal pollution. The sum of adsorbed heavy metals on the soils could well described using the Langmuir equation. The maximum adsorption capacity (Q m) of soils ranged from 32.57 to 90.09 mmol kg−1. Highly significant positive correlations were found between the K dΣmedium and Q m of the metals and pH value and cation exchange capacity (CEC) of soil, suggesting that soil pH and CEC were key factors controlling the solubility and mobility of the metals in soils.  相似文献   

9.
The determination of ultimate capacity (Q) of driven piles in cohesionless soil is an important task in geotechnical engineering. This article adopts Multivariate Adaptive Regression Spline (MARS) for prediction Q of driven piles in cohesionless soil. MARS uses length (L), angle of shear resistance of the soil around the shaft (?shaft), angle of shear resistance of the soil at the tip of the pile (?tip), area (A), and effective vertical stress at the tip of the pile as input variables. Q is the output of MARS. The results of MARS are compared with that of the Generalized Regression Neural Network model. An equation has been also presented based on the developed MARS. The results show the strong potential of MARS to be applied to geotechnical engineering as a regression tool. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
B. Schurr  A. Rietbrock  G. Asch  R. Kind  O. Oncken   《Tectonophysics》2006,415(1-4):203-223
Data from three temporary seismic networks were merged for tomographic inversion. Although the deployments did not coincide in time, spatial overlap was achieved by re-occupying existing sites. Travel times and t operators of about 1600 earthquakes were inverted for 3D models of νp, νp/νs and P-wave attenuation (Qp− 1). All three attributes provide a consistent image of the entire subduction zone on a lithospheric scale. The tomographic images reveal low velocities and high attenuation in the crust and mantle underlying the Western Cordillera and most of the Puna plateau, indicative of weak rheology and mostly asthenospheric mantle. In contrast, forearc and eastern foreland are characterized by high Qp values, corresponding to cold temperatures in accordance with thermal models. In the backarc, between 23°S and 24°S, a high velocity, high Qp structure beneath the Eastern Cordillera and eastern Puna is interpreted as detaching continental lithosphere that has been thickened in the orogenic process. South of this structure, the mantle is characterized by low velocities, high νp/νs ratios, and low Qp values. Here it is believed that lithosphere originally underlying Andean crust has already been removed. This is supported by new estimates of crustal thickness and volcanic activity.  相似文献   

11.
Earthquake hazard maps for Syria are presented in this paper. The Peak Ground Acceleration (PGA) and the Modified Mercalli Intensity (MMI) on bedrock, both with 90% probability of not being exceeded during a life time of 50, 100 and 200 years, respectively are developed. The probabilistic PGA and MMI values are evaluated assuming linear sources (faults) as potential sources of future earthquakes. A new attenuation relationship for this region is developed. Ten distinctive faults of potential earthquakes are identified in and around Syria. The pertinent parameters of each fault, such as theb-parameter in the Gutenberg-Richter formula, the annual rate 4 and the upper bound magnitudem 1 are determined from two sets of seismic data: the historical earthquakes and the instrumentally recorded earthquake data (AD 1900–1992). The seismic hazard maps developed are intended for preliminary analysis of new designs and seismic check of existing civil engineering structures.  相似文献   

12.
Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature‐induced grain coarsening. Despite this large‐scale trend, a considerable grain size scatter occurs on the outcrop‐scale indicating local influence of second‐order effects such as thermal perturbations, fluid flow and second‐phase particles. Second‐phase particles, whose sizes range from nano‐ to the micron‐scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron‐scale second‐phase particles, or to samples containing a large number of nano‐scale particles. The obtained data set suggests that the second phases induce a temperature‐controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D = C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second‐phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian‐type distributions of the pure samples. In contrast, fluid‐enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable δ18O and δ13C isotope ratios in fluid‐affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid‐induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1. To summarize, considerable grain size variations of up to one order of magnitude can locally result from second‐order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.  相似文献   

13.
Effect of Geotextile Ties on Uplift Capacity of Anchors Embedded in Sand   总被引:1,自引:0,他引:1  
This paper presents the results of experimental investigation on the effect of geotextile ties on uplift capacity of anchors embedded in sand. Uplift capacity of anchor increases with increase in embedment depth to base diameter (H/D) ratio irrespective of type of anchor. With the introduction of tie to anchors, uplift capacity of anchors increases and optimum number of layers of ties is found to be 2. A non linear power model has been developed to predict the uplift capacity at any settlement (Q R) of anchors with tie in terms of uplift capacity at any settlement (Q URs) of anchor without tie, H/D ratio, number of layers of tie and displacement to base diameter ratio (Δ/D). The model is applicable for predicting Q R having the values of Q RS, H/D, N and Δ/D in the range of 0.257 ≤ Q URs ≤ 1.420, 1.5 ≤ H/D ≤ 3.0, 1 ≤ N ≤ 4, 0.8 ≤ Δ/D ≤ 8.  相似文献   

14.
Zhou  Jia-jin  Yu  Jian-lin  Gong  Xiao-nan  El Naggar  M. Hesham  Zhang  Ri-hong 《Acta Geotechnica》2021,16(10):3327-3338

This paper presents the results of field tests performed to investigate the compressive bearing capacity of pre-bored grouted planted (PGP) pile with enlarged grout base focusing on its base bearing capacity. The bi-directional O-cell load test was conducted to evaluate the behavior of full scale PGP piles. The test results show that the pile head displacements needed to fully mobilize the shaft resistance were 5.9% and 6.4% D (D is pile diameter), respectively, of two test piles, owing to the large elastic shortening of pile shaft. Furthermore, the results demonstrated that the PHC nodular pile base and grout body at the enlarged base could act as a unit in the loading process, and the enlarged grout base could effectively promote the base bearing capacity of PGP pile through increasing the base area. The normalized base resistances (unit base resistance/average cone base resistance) of two test piles were 0.17 and 0.19, respectively, when the base displacement reached 5% Db (Db is pile base diameter). The permeation of grout into the silty sand layer under pile base increased the elastic modulus of silty sand, which could help to decrease pile head displacement under working load.

  相似文献   

15.
Six new heat flow determinations are presented for Proterozoic mobile belts of the Churchill Province of the Canadian Shield, an area that was affected by several stages of the Hudsonian orogenic sequence (1.9-1.6 Ga ago). With other, previously published, values the mean of eight determinations considered reliable and representative and corrected for the effects of Pleistocene glaciation is 44 ± 7 mW m−2. Heat generation measurements have also been made; values range from 0.1–1.04 μW m−3.A linear relation between heat flow and heat production is apparent. The heat flow axis intercept is 37 mW m−2, and the scale depth is 11 km, compared with 28 mW m−2 and 13.6 km for the Archaean Superior Province. Approximately 20% of the Churchill heat flow appears to be derived from radioactive decay in the upper crust, compared with 30% for the Superior Province and shields as a whole. The observations imply that the heat flow-heat production relation for the Churchill Province should be written as Q = Qc + Qe + A0b where Qc is equivalent to the reduced heat flow for the Archaean terrain, b is similar for the two, and Qe is an additional component of heat flow in the Proterozoic mobile belts of the Churchill Province.A speculative tectonic model is presented. It is suggested that rifting along two axes of an original craton, which had lateral variations in near surface radiogenic element concentration, followed by erosion of the radiogenic layer and subsequent reconvergence of the cratonic segments, led to widespread redistribution of radioactive elements into the reactivated inter-rift crustal block. One result would be that crustal temperatures are higher in that part of the Churchill Province than in the Superior.  相似文献   

16.
札达盆地新近系上新统一第四系下更新统地层可划分为下更新统香孜组(Qp1x)、新近系上新统古格群(N2gg),其中后者又细分为上新统札达组(N22z)和上新统托林组(N21t),属地堑型湖盆沉积,主要发育冲洪积相、冰缘相、冰湖相、湖相及河流相。札达盆地的构造演化经历了早期裂陷(N21t)、持续裂陷(N22z)、湖盆外泻(Qp1x)、稳定隆升(Qp2f)和强烈快速隆升(Qp3~Qh)等5个阶段。盆地南北两侧数条相向正断层的活动性控制着该区的沉积相展布格局:断层活动强烈时,湖盆水域扩大,湖水加深,主要发育深湖-半深湖沉积,断层活动减弱时,水体变浅或干涸,湖盆被充填,主要发育河流相、冲洪积沉积。第四纪以来,随着青藏高原的快速隆升,札达盆地周缘高山区冰川活动加剧,主要发育冰缘相和冰湖相。   相似文献   

17.
Piles supporting transmission towers, offshore structures (such as wind turbines), or infrastructures in seismic areas are frequently subjected to either one-way or two-way cyclic lateral loadings. Relatively little attention, however, has been paid to compare and understand the effects of different loading regimes (one-way or two-way cycling) on lateral responses of piles in soft clay. For this reason, a series of field tests in soft clay are carried out to compare one-way and two-way cyclic responses of single piles and of jet-grouting reinforced piles. The field tests reveal that the single pile subjected to two-way cycling experiences much more rapid degradation in lateral stiffness and capacity, but accumulates much smaller residual pile deflection (δ p), than the single pile under one-way cycling. This is because the reverse part of the two-way cycling also generates plastic strain, causing additional softening and strength reduction in the soil surrounding the pile. After each cycling, non-zero bending moment (i.e. locked in moment, or M L) is retained in the single piles, and the M L increases with the δ p. The one-way cycling leads to two times larger M L than the two-way cycling, as it causes greater δ p. The maximum M L in the pile after one-way cycling can be up to 40% of the maximum bending moment induced during the previous cyclic loading stage. After application of jet-grouting surrounding the upper part of the single pile, it greatly reduces degradation of lateral pile stiffness, accumulation of δ p and therefore development of M L. Compared to the field measurements, the API (API RP 2A-WSD, recommended practice for planning, designing, and constructing fixed offshore platform-working stress design, 21st edn. API, Washington, 2000) code underestimates the lateral stiffness of the pile under one-way cycling, while overestimates that of the pile under two-way cycling, leading to a non-conservative prediction of bending moment in the latter pile.  相似文献   

18.
Nine Static vertical pile loading tests were carried out in Abu-Dhabi, the United Arab Emirates in order to assess the end bearing capacity and settlement of piles bored in slightly silty sands overlying soft rocky horizons like sandstone and calcarenite. The paper is aimed at presenting the results of interpretation of the pile tests in order to estimate the end bearing capacity in correlation with the unconfined compressive strength R c and the rock quality designation (RQD). Load-settlement behaviour is also studied through an analysis by the elastic methods commonly used in pile design.  相似文献   

19.
Based on the theory of thermal conductivity, in this paper we derived a formula to estimate the prolongation period (AtL) of cooling-crystallization process of a granitic melt caused by latent heat of crystallization as follows:△tL=QL×△tcol/(TM-TC)×CP where TM is initial temperature of the granite melt, Tc crystallization temperature of the granite melt, Cp specific heat, △tcol cooling period of a granite melt from its initial temperature (TM) to its crystallization temperature (Tc), QL latent heat of the granite melt.
The cooling period of the melt for the Fanshan granodiorite from its initial temperature (900℃) to crystallization temperature (600℃) could be estimated -210,000 years if latent heat was not considered. Calculation for the Fanshan melt using the above formula yields a AtL value of -190,000 years, which implies that the actual cooling period within the temperature range of 900°-600℃ should be 400,000 years. This demonstrates that the latent heat produced from crystallization of the granitic melt is a key factor influencing the cooling-crystallization process of a granitic melt, prolongating the period of crystallization and resulting in the large emplacement-crystallization time difference (ECTD) in granite batholith.  相似文献   

20.
The Dharwar craton, Cuddapah basin and the Godavari graben characterise three diverse geological and tectonic settings in the peninsular shield of India. Owing to their contiguous proximity, they offer a unique opportunity to document differences, if any, in their seismic wave attenuation characteristics that might have a bearing on the seismogenic nature of the crust in a craton, basin and a rift-like graben structure. An attempt is made here to bring out these differences using constraints from coda-Q. We considered local earthquakes with epicentral distances ranging from␣14 to 150 km recorded at the digital broadband stations at Dharwar (DHD), Cuddapah (CUD) and Kothagudem (KGD) regions to derive the frequency-dependent coda-Q relations. Using the single scattering method, we obtained the frequency-dependent Q C relationship (Q C = Q 0 f n )for each of the three geological units separately: DHD: Q C = (730.62 ± 0.09)f (0.54 ± 0.01); CUD: Q C = (535.06 ± 0.13)f (0.59 ± 0.01) and KGD: Q C = (150.56 ± 0.08)f(0.91 ± 0.01). The Q C values obtained for all the three sub-regions show moderate to strong frequency dependence and essentially reflect the level of crustal heterogeneities to varying degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号