首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The equivalence of Lagrangian containing gravitational, electromagnetic, scalar, and torsion fields is discussed. It is shown that the equation for the variation of the scalar field leads to a torsion wave equation generated by electromagnetic field leads to a torsion wave equation generated by electromagnetic fields. The system is proved to be equivalent to a Proca field coupling torsion non-minimally to a massive photon and having the scalar Higgs field as a strength of this photon-torsion coupling. The generalized Maxwell equations containing the scalar fields are obtained. The torsion potential around the Sun or a more massive collapsing star in the weak field limit is estimated.  相似文献   

2.
We study the interplay of clumping at small scales with the collapse and relaxation of perturbations at much larger scales. We present results of our analysis when the large-scale perturbation is modelled as a plane wave. We find that in the absence of substructure, collapse leads to formation of a pancake with multistream regions. Dynamical relaxation of the plane wave is faster in the presence of substructure. Scattering of substructures and the resulting enhancement of transverse motions of haloes in the multistream region lead to a thinner pancake. In turn, collapse of the plane wave leads to formation of more massive collapsed haloes as compared to the collapse of substructure in the absence of the plane wave. The formation of more massive haloes happens without any increase in the total mass in collapsed haloes. A comparison with the Burgers equation approach in the absence of any substructure suggests that the preferred value of effective viscosity depends primarily on the number of streams in a region.  相似文献   

3.
We point out that several independent considerations rule out the hypothesis that the missing mass in galactic halos is dominated by massive neutral fermions such as neutrinos, gravitinos or photinos.  相似文献   

4.
Nova-like binary systems are similar to W UMa-systems in their basic physical characteristics. Outwardly such systems are different — nova-like systems contain a white dwarf as a component, while both components of a W UMa-system are near the Main Sequence. A hypothesis is proposed, seeking the origin of contact W UMa-type systems in a fission of rapidly-rotating helium isothermal core of an evolved giant star. The contraction of the more massive component leads to the formation of a white dwarf and, consequently, to a transformation of a W UMa-type system into a nova-like system.  相似文献   

5.
A new scheme has been devised to calculate discrete unstable global shearing spiral modes of gaseous disk models of galaxies. The scheme makes use of the Legendre expansion of eigen functions and the problem of stability analysis is reduced to an eigenvalue problem of an infinite matrix. The spiral patterns of these shearing wave solutions of linearized equations change their form in the course of time due to the differential rotation of the equilibrium disk. These shearing wave solutions are presumed to have intermediate characteristics between so-called density-waves and material arms. Comparison between these shearing modes and the non-shearing normal modes for a series of disk models is presented.  相似文献   

6.
Models of spherically-symmetric static systems made up of self-gravitating, completely degenerate neutral fermions containing a core are constructed within the framework of general relativity and the effects of different core masses and compactness on the properties of the system are examined. For the specific case where the fermions are massive neutrinos (10 eV) we find, for example, that it is possible to have a neutrino halo with a normal Galaxy, or a cluster of galaxies, as the core, with the right values of mass and radius required of the invisible halo in the missing mass problem. The suggestive nature of these results calls for further studies using a more realistic equation of state.  相似文献   

7.
We have developed a new scheme to treat a multiphase interstellar medium in smoothed particle hydrodynamics simulations of galaxy formation. This scheme can represent a co-spatial mixture of cold and hot ISM components, and is formulated without scale-dependent parameters. It is thus particularly suited to studies of cosmological structure formation where galaxies with a wide range of masses form simultaneously. We also present new algorithms for energy and heavy element injection by supernovae, and show that together these schemes can reproduce several important observed effects in galaxy evolution. Both in collapsing systems and in quiescent galaxies our codes can reproduce the Kennicutt relation between the surface densities of gas and of star formation. Strongly metal-enhanced winds are generated in both cases with ratios of mass-loss to star formation which are similar to those observed. This leads to a self-regulated cycle for star formation activity. The overall impact of feedback depends on galaxy mass. Star formation is suppressed at most by a factor of a few in massive galaxies, but in low-mass systems the effects can be much larger, giving star formation an episodic, bursty character. The larger the energy fraction assumed available in feedback, the more massive the outflows and the lower the final stellar masses. Winds from forming discs are collimated perpendicular to the disc plane, reach velocities up to  ∼1000 km s−1  , and efficiently transport metals out of the galaxies. The asymptotically unbound baryon fraction drops from >95 per cent to ∼30 per cent from the least to the most massive of our idealized galaxies, but the fraction of all metals ejected with this component exceeds 60 per cent regardless of mass. Such winds could plausibly enrich the intergalactic medium to observed levels.  相似文献   

8.
Massive stars are of interest as progenitors of supernovae, i.e. neutron stars and black holes, which can be sources of gravitational waves. Recent population synthesis models can predict neutron star and gravitational wave observations but deal with a fixed supernova rate or an assumed initial mass function for the population of massive stars. Here we investigate those massive stars, which are supernova progenitors, i.e. with O‐ and early B‐type stars, and also all supergiants within 3 kpc. We restrict our sample to those massive stars detected both in 2MASS and observed by Hipparcos, i.e. only those stars with parallax and precise photometry. To determine the luminosities we calculated the extinctions from published multi‐colour photometry, spectral types, luminosity class, all corrected for multiplicity and recently revised Hipparcos distances. We use luminosities and temperatures to estimate the masses and ages of these stars using different models from different authors. Having estimated the luminosities of all our stars within 3 kpc, in particular for all O‐ and early B‐type stars, we have determined the median and mean luminosities for all spectral types for luminosity classes I, III, and V. Our luminosity values for supergiants deviate from earlier results: Previous work generally overestimates distances and luminosities compared to our data, this is likely due to Hipparcos parallaxes (generally more accurate and larger than previous ground‐based data) and the fact that many massive stars have recently been resolved into multiples of lower masses and luminosities. From luminosities and effective temperatures we derived masses and ages using mass tracks and isochrones from different authors. From masses and ages we estimated lifetimes and derived a lower limit for the supernova rate of ≈20 events/Myr averaged over the next 10 Myr within 600 pc from the sun. These data are then used to search for areas in the sky with higher likelihood for a supernova or gravitational wave event (like OB associations) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A novel formulation of the quadrupole equation for potential stellar gravitational‐wave power estimation is derived. The derivation commences with the classical Einstein quadrupole formalism and then utilizes Newton's second law to establish a simplified formulation involving the radius of gyration of a mass or system of masses involving a pair of massive stars either on orbit about one another, or otherwise separated, or a star with a dumbbell‐like or aspherical mass distribution and an impulsive force acting on the mass or masses in order to estimate the power of a gravitational wave that is generated. A numerical example, based upon the well‐known gravitational‐wave power observed to be generated by PSR 1913+16, is utilized to test the formulation. Potential applications to stellar jets, including stellar‐black‐hole produced jets, are cited as examples of the potential applications of the novel quadrupole formulation. It is suggested that the gravitational waves, generated by the applications suggested, might be detected by the proposed space‐based Laser Interferometer Space Antenna or LISA. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
An heuristic hypothesis is advanced about dominant Bose statistics during the transition from the radiation era to the matter era in the early universe. It is shown that large scale Bose condensation of matter from baryon-antibaryon pairs is possible, as a result of which a colossal amount of mass may accumulate in a volume of cosmic scale. At a threshold density of matter, the structural bosons decay into the fermions of which they are composed, so that a sudden change in the symmetry of the wave functions of the particles causes a jump from Bose-Einstein to Fermi-Dirac statistics. This involves a large scale phase transition with an enormous pressure jump which may show up as a cosmological bang at the beginning of the matter era. __________ Translated from Astrofizika, Vol. 51, No. 1, pp. 161–172 (February 2008).  相似文献   

11.
Safronov's statement that relative velocities of planetesimals are on the order of the escape velocity of the largest body of the population is shown to be correct only when a major part of the total mass resides in several large bodies. In the first stage of accumulation, runaway accretion produces large bodies separated by mass form the remaining population. At this stage, relative velocities of planetesimals are much smaller than those adopted earlier. This requires a modification of Schmidt's scheme of accumulation of the Earth and other terrestrial planets from material in their feeding zones. This also leads to removal of the author's arguments (Levin 1972c) in favor of a protoplanetary nebula with an extended, massive periphery.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

12.
Large-scale sky surveys are observing massive amounts of stellar spectra.The large number of stellar spectra makes it necessary to automatically parameterize spectral data,which in turn helps in statistically exploring properties related to the atmospheric parameters.This work focuses on designing an automatic scheme to estimate effective temperature(T_(eff)),surface gravity(log g) and metallicity[Fe/H] from stellar spectra.A scheme based on three deep neural networks(DNNs) is proposed.This scheme consists of the following three procedures:first,the configuration of a DNN is initialized using a series of autoencoder neural networks;second,the DNN is fine-tuned using a gradient descent scheme;third,three atmospheric parameters T_(eff),log g and [Fe/H] are estimated using the computed DNNs.The constructed DNN is a neural network with six layers(one input layer,one output layer and four hidden layers),for which the number of nodes in the six layers are 3821,1000,500,100,30 and 1,respectively.This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz's new opacity distribution function models.Test errors are measured with mean absolute errors(MAEs).The errors on real spectra from the Sloan Digital Sky Survey(SDSS) are 0.1477,0.0048 and 0.1129 dex for log g,log T_(eff) and [Fe/H](64.85 K for T_(eff)),respectively.Regarding theoretical spectra from Kurucz's new opacity distribution function models,the MAE of the test errors are 0.0182,0.0011 and 0.0112 dex for log g,log T_(eff) and [Fe/H](14.90 K for T_(eff)),respectively.  相似文献   

13.
We present an N-body code called Taichi for galactic dynamics and controlled numerical experiments. The code includes two high-order hierarchical multipole expansion methods: the Barnes-Hut (BH) tree and the fast multipole method (FMM). For the time integration, the code can use either a conventional adaptive KDK or a Hamiltonian splitting integrator. The combination of FMM and the Hamiltonian splitting integrator leads to a momentum-conserving N-body scheme with individual time steps. We find Taichi performs well in the typical applications in galactic dynamics. In the isolated and interacting galaxies tests, the momentum conserving scheme produces the same result as a conventional BH tree code. But for similar force accuracies, FMM significantly speeds up the simulations compared to the monopole BH tree. In the cold collapse test, we find the inner structure after relaxation can be sensitive to the force accuracies. Taichi is ready to incorporate special treatment of close encounters thanks to the Hamiltonian splitting integrator, suitable for studying dynamics around central massive bodies.  相似文献   

14.
The longitudinal fast solitary waves induced by weakly relativistic positron showers of astrophysical origin are studied in a plasma system contaminated with some massive impurities in presence of superthermal effects. The superthermal effects are due to the high energy electrons. The impurities are dust corpuscles with positive and negative charges. It is noticed that increase in the kappa parameter of electrons and relativistic streaming factor of weakly relativistic positron shower, negative dust concentration invoke an enhancement in the strength of solitary wave. On the other hand increase in the shower’s temperature as well as positive dust concentration diminish the solitary hump strength. It is worth to mention that only hump type compressive fast solitary waves are predicted by our model, for the given set of plasma parameters, because the convective coefficient of the nonlinear governing equation for solitary wave remains positive in considered regime of interaction for plasma and positron shower. Our calculations in linear regime predict both the fast and slow positron shower induced longitudinal, electrostatic perturbations. Our results may be of importance in understanding the nonlinear propagation of waves in doped astrophysical superthermal plasmas with relativistic positron showers.  相似文献   

15.
Working with a magnetic field periodic along Oz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar’s crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion’s wave function is expressed in terms of the Heun’s Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu’s equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.  相似文献   

16.
The present study deals with locally rotationally symmetric (LRS) Bianchi type II cosmological model representing massive string. The energy-momentum tensor for such string as formulated by Letelier (Phys. Rev. D 28:2414, 1983) is used to construct massive string cosmological model for which we assume that the expansion (θ) in the model is proportional to the shear (σ). This condition leads to A=B m , where A and B are the metric coefficients and m is proportionality constant. For suitable choice of constant m, it is observed that in early stage of the evolution of the universe string dominates over the particle whereas the universe is dominated by massive string at the late time. Our model is in accelerating phase which is consistent to the recent observations of type Is supernovae. Some physical and geometric behavior of the model is also discussed.  相似文献   

17.
It is shown that the existing theory of type II bursts, based on a model of the emission from the shock wave front, has difficulties when compared with observational data. We suggests a new model for type II bursts. According to this model, in an expanding magnetic loop a cluster of energetic electrons acts to excite the cyclotron instability of plasma waves. The waves are excited on surfaces where the cyclotron resonance condition is satisfied, and are then transformed into electromagnetic emission by merging. Our proposed model may be useful to explain some observational facts, such as the narrow-band character of the emission and the space-time relationship between the harmonics. Some tests to check the validity are proposed.  相似文献   

18.
The Hawking radiation is considered as a quantum tunneling process, which can be studied in the framework of the Hamilton–Jacobi method. In this study, we present the wave equation for a mass generating massive and charged scalar particle (boson). In sequel, we analyse the quantum tunneling of these bosons from a generic 4-dimensional spherically symmetric black hole. We apply the Hamilton–Jacobi formalism to derive the radial integral solution for the classically forbidden action which leads to the tunneling probability. To support our arguments, we take the dyonic Reissner–Nordström black hole as a test background. Comparing the tunneling probability obtained with the Boltzmann formula, we succeed in reading the standard Hawking temperature of the dyonic Reissner–Nordström black hole.  相似文献   

19.
20.
Results are presented from a two-dimensional numerical simulation of the collapse of a rotating core with formation of a neutron star that has strong differential rotation in its outer regions. A specially developed numerical method is used which is based on a fully conservative implicit operator difference scheme for gravitational gas dynamics problems in lagrangian coordinates on a variable-structure triangular grid. The recoil shock wave generated by the collapse causes ejection of a small amount of material. This cannot explain the explosion of type II supernovae. The strong differential rotation in the presence of even a weak initial magnetic field obtained in these calculations must lead to a rise in the magnetic pressure, formation of an MHD shock wave, and conversion of rotational energy into the energy of radial expansion (magnetorotational supernova explosion).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号