首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
为了验证提出的新型筒式自复位形状记忆合金阻尼器(telescopic recentering shape memory al-loy damper,TRSMAD)对结构平动-扭转耦联振动反应的抑制作用,进行了偏心结构消能减震体系的振动台试验。设计了一个1/4缩尺的三层两跨单向偏心的钢框架模型,将提出的新型SMA阻尼器安装在结构底层的一侧,通过振动台分别对无控条件下和装有阻尼器的有控条件下的结构反应进行了研究。试验结果表明:(1)在各地震波作用下,TRSMAD对结构的平动反应有很好控制效果,而对结构各层扭转角位移的控制效果稍低;(2)不同地震波下的控制效果有所不同:对结构的平动位移而言,天津波的减震率最高,El Centro波次之,最后为Taft波;对结构扭转角的控制,平均而言,除了天津波作用下第二层为特例外,对El Centro波的减震效果最好,其次为Taft波,最后为天津波;(3)同一地震波下,阻尼器对结构模型一层的位移控制效果较其他层为优。  相似文献   

2.
遗传BP神经网络主动AMD对偏心结构的减震控制   总被引:7,自引:0,他引:7  
本文采用在结构顶层水平双向设置AMD主动控制装置的方法,对偏心结构在多向地震作用下的振动进行了遗传BP神经网络主动控制研究。首先论述了遗传BP神经网络的基本理论,然后介绍结构—AMD扭转耦联控制系统微分方程及其状态空间求解方法,最后介绍利用遗传BP神经网络对结构反应进行预测及对结构实施主动控制的方法。数值结果表明,利用遗传BP网络进行结构反应预测和控制是可行且有效的,能对结构的平动和扭转反应起到较好的减震效果。  相似文献   

3.
某周期比超限偏心结构地震反应控制分析   总被引:1,自引:0,他引:1  
本文以周期比超限的某偏心结构工程为研究背景,基于SAP2000建立三维有限元模型,采用黏滞阻尼器、黏弹性阻尼器、软钢阻尼器、复合铅黏弹性阻尼器和钢支撑五种减震方案对其进行扭转控制,针对不同扭转控制方案分别进行了模态分析、反应谱分析和动力时程分析,对比研究了多遇地震作用下各控制方案的周期比、层间位移、支撑内力及阻尼器的耗能能力。研究表明:五种控制方案均具有有效抑制结构扭转振动响应的能力,降低结构的最大层间位移角,并使之满足规范要求;后四种控制方案能明显减小结构的周期比,将结构第一扭转反应控制在第三振型;对于此类偏心结构体系的扭转振动控制,本文建议阻尼器设置应尽量远离刚度中心,以达到最佳扭转控制效果。  相似文献   

4.
采用速度脉冲分量与宽频分量相结合的方法,拟合了近场多脉冲地震波;构建了组合隔震结构的计算模型和运动方程,对组合隔震结构的动力响应进行仿真分析。结果表明:通过增设黏滞阻尼器可以有效控制结构的地震响应,减小隔震层位移,改善结构的受力。对于提高近场多脉冲地震作用下结构的安全性有显著作用。  相似文献   

5.
斜拉桥结构减震设计优化研究   总被引:3,自引:0,他引:3  
位于中强以上地震烈度区的大跨斜拉桥结构,如果采用传统的抗震设计方法,通常很难满足结构的抗震设计要求,因此采取一定的减震措施显得非常必要。本文以某一总长为2 088m的大跨双塔双索面斜拉桥为分析算例,对斜拉桥结构的减震设计进行了研究。合理的减震结构体系是取得良好减震效果的前提,通过分析对比,该大跨斜拉桥横向采用局部减震体系最为合理,即只在近塔辅助墩处设置横向粘滞阻尼器,其它塔、墩处采用常规的横向约束方案。为使减震结构得到更好的减震效果,还应对减震装置参数进行优化设计。由于采取了合理的减震结构体系、较优的减震装置参数,使该大跨斜拉桥取得了很好的减震设计效果。  相似文献   

6.
神经网络半主动TLCD对偏心结构的减震控制   总被引:5,自引:0,他引:5  
本文采用在结构水平双向设置TLCD半主动控制装置的方法,对偏心结构在多维地震作用下的振动控制问题进行研究。首先利用多层前向神经网络,对偏心结构在双向地震输入下的两个平动方向的反应进行预测,然后在建立起半主动控制策略的基础上,利用神经网络根据控制准则调整TLCD的开孔率,实现以结构的半主动控制,数值结构表明,这种方法能对结构的平动反应和扭转反应都能起到的较好的减震效果。  相似文献   

7.
大跨斜拉桥的近断层地震响应及减震控制   总被引:2,自引:0,他引:2  
近断层地震长周期成分丰富,存在速度大脉冲效应;而大跨度斜拉桥一般采用半漂浮体系或漂浮体系,所以固有频率较低。为了研究大跨度斜拉桥在近断层地震作用下的反应规律及减震措施,利用ANSYS软件分析了某半漂浮体系的大跨斜拉桥在近断层地震作用下的时程响应,并对其减震控制方法进行了探讨。研究表明,大跨度斜拉桥的近断层地震响应随着PGV/PGA值的增大而增大,且增大幅度较大,近场脉冲效应较为显著;对于近断层地震作用,不建议采用塔梁弹性连接装置作为主梁纵漂的减震措施,而采用参数适宜的铅挤压阻尼器和粘滞阻尼器则均能获得很好的减震效果;由于大跨度斜拉桥的近断层地震反应较大,应提高其支座的设计允许位移。  相似文献   

8.
利用4个台站记录到的近场和远场地震动,研究了钢筋混凝土大跨刚构桥在近场脉冲型地震动横向激励下的反应,并与在远场地震动激励下的反应进行了比较;分析了大跨度桥梁在2种类型地震动作用下的反应特性。结果表明:在相同加速度峰值的地震动作用下,横向激励时,近场脉冲型地震动引起的桥梁反应,均比非脉冲型地震动引起的桥梁反应显著。近场脉冲型地震动激励下,桥梁反应均有较大的增加,对不同的结构部位,其影响规律相似。长周期速度脉冲效应会对大跨桥梁结构产生大的位移冲击,应当重视近场地震动中长周期速度脉冲效应对长周期及柔性结构的影响。  相似文献   

9.
基于999条具有完整信息的欧洲及其毗邻地区的近场强震动记录,对反映地震动频谱特性的不同特征周期参数(反应谱卓越周期T。、平滑化反应谱卓越周期T_o、傅氏幅值谱平均周期T_m)进行了研究,分析了场地条件、地震震级等因素对近场水平向及竖向地震动频谱特征周期的影响,并探讨了我国现行规范中设计反应谱特征周期T_g取值的合理性问题。统计结果表明:在近场区域场地和震中距仍是影响地震动频谱特征周期的重要因素,因为近场地震动的复杂性,震级对地震动频谱特征周期的影响不是很明显;近场区域竖向与水平向地震动的频谱特征周期有明显差别,且场地越软竖向与水平向地震动频谱特征周期的比值越小;我国现行抗震规范中设计反应谱的特征周期取值偏低,可能是偏于不安全的。  相似文献   

10.
为研究近断层脉冲型地震动对黏滞阻尼器减震结构抗震性能的影响,从结构在地震动作用下的能量分配与耗散机制角度进行探讨分析。基于结构能量平衡原理,利用MATLAB软件编写减震结构能量响应求解程序,利用该程序计算分析减震结构与无控结构在不同近断层脉冲型地震动作用下的能量分布特点,并分析减震结构在近断层非脉冲型和脉冲型地震动作用下的能量分布与结构变形的差异性,进一步揭示脉冲周期Tp对减震结构塑性耗能分布的影响规律。研究结果表明,在不同近断层地震动作用下,附设黏滞阻尼器的减震结构表现出了不同的减震效果,其塑性变形程度受结构自振周期与脉冲周期之比的影响较显著。当结构在遭遇地震之前的基本周期与脉冲周期之比T0/Tp接近于1时,结构因共振效应导致其塑性变形显著增大,其地震损伤程度较严重;当T0/Tp远大于1,或当T0/Tp小于1且结构在遭遇地震之后的基本周期与脉冲周期之比T1/Tp同时远小于1时,减震结构可避开共振频段,其塑性变形显著减小,且在近断层脉冲型地震动作用下的抗震性能得到提高。  相似文献   

11.
为研究近断层地震作用下框排架结构破坏的可能性,以某钢筋混凝土框排架结构为原型建立有限元非线性分析模型,选取16条近断层地震波及8条远场地震波,采用增量动力分析方法绘制易损性曲线.结果表明:对于远场地震,8度多遇地震及基本地震时,结构正常使用、基本使用、修复后使用、生命安全及防止倒塌五个极限状态均未超越,满足"小震不坏,...  相似文献   

12.
通过对隔震结构进行非线性动力响应分析,分别研究地震动参数和支座参数对结构地震响应的影响。首先,建立铅芯橡胶支座基础隔震结构的非线性运动方程;然后,以人工合成脉冲型地震动作为输入,运用MATLAB进行编程并求解结构在脉冲型地震动作用下的地震响应;最后,分别研究速度脉冲周期、支座屈服力、屈服后与屈服前的刚度比对隔震支座最大位移和上部结构层间位移的影响。研究结果表明,脉冲周期对结构地震响应影响很大,在进行隔震设计时应使结构自振周期远离脉冲周期;支座刚度比对结构地震响应影响较大,在进行支座选型时应重点关注;支座屈服力对支座位移的影响显著,屈服力越大,支座位移越小。  相似文献   

13.
以HDR隔震梁桥多自由度(MDOF)模型和等效双线性单自由度(SDOF)模型为研究对象,以典型近场地震动作为输入,研究HDR支座双向耦合效应对HDR隔震梁桥地震响应的影响。研究结果表明:不考虑双向耦合效应的HDR支座滞回曲线呈典型双线性;考虑双向耦合效应的HDR支座滞回曲线面积小于不考虑双向耦合效应的HDR支座滞回曲线面积。不考虑双向耦合效应的顺桥向HDR支座位移峰值db大于考虑双向耦合效应时,但横桥向的结果相反。近场地震作用下,对梁桥进行HDR支座隔震设计时,忽略双向耦合效应计算得到的墩底剪力峰值和弯矩峰值均偏于保守。可忽略HDR支座双向耦合效应对HDR隔震梁桥近场地震能量的影响。  相似文献   

14.
含速度大脉冲的强地震动具有复杂的特性,人工提取速度大脉冲特征的方法较繁琐,故利用卷积神经网络(CNN)在图像特征自动提取方面的优势,提出基于卷积神经网络图像识别的速度大脉冲识别方法。基于美国太平洋地震工程研究中心NGA-West1数据库提供的强地震动记录,筛选出6 000条非脉冲记录和91条含有速度大脉冲的强地震动记录。采用在原始记录中加入高斯噪声和过采样的方法,使2类记录样本数量达到均衡。利用本文建立的卷积神经网络模型对2类记录速度时程图进行特征自动提取和分类识别,结果显示测试集准确率为99%,表明本文卷积神经网络模型能够自动提取速度大脉冲特征,进而复现已有结果。将本文方法与传统方法进行了对比,结果表明,对含有多个速度脉冲的强地震动记录的识别,本文方法优于传统方法,具有较高的可靠性、鲁棒性、灵活性。  相似文献   

15.
传统高层建筑地震损伤模型不能反映构件极限滞回耗能随累积幅值的改变情况,无法有效确定组合参数,离散性较大。为此,设计一种远场长周期地震下高层建筑的地震损伤模型。针对不同层次高层建筑结构,依据广义力-广义变形曲线,构建变形损伤模型。结合累积能量比、远场长周期地震瞬时输入能比构建能量损伤模型。从变形与能量两方面综合评价损伤,依据钢筋混凝土结构构建最大反应变形与耗损能量的线性组合地震损伤模型,并对其进行改进。实验选用ILA003、ILA048和TCU115三种长周期地震波,计算不同构件和高层建筑结构整体损伤结果,验证所提模型的可靠性。将所提模型应用于实际高层建筑中,发现其实用性强。  相似文献   

16.
为了研究材料劣化对近断层区简支梁桥横向抗震性能的影响,揭示支座+挡块组合隔震效果随桥梁服役时间的变化规律,以汶川地震中某实际桥例为背景,考虑钢筋锈蚀和混凝土碳化的时变特点,建立了桥例非线性时变分析模型,采用时程分析研究了桥梁不同构件的劣化损伤规律,并对挡块强度的时变影响规律进行了参数分析。结果表明:随着服役年限的增长,墩柱抗弯能力不断减小,损伤程度不断加剧;材料劣化提高了挡块的相对限位能力,使得支座位移下降,但由于墩柱损伤加剧,桥梁整体抗震性能下降;挡块强度越大,其限位能力越强,但会降低支座的"隔震"效果,增大墩柱塑性变形,且服役时间越长,挡块强度的增大对墩柱越不利。当挡块强度取20%~30%支反力时,不同服役年限下的支座和主梁位移都能得到有效的控制,而桥墩也处于可修复的损伤状态,对于桥例而言是合理强度取值,且与美国Caltrans规范吻合。  相似文献   

17.
面向海域工程抗震设计及评估对海底地震动的需求,基于日本相模湾海域K-NET的ETMC海底强震动记录,根据震级、震中距选取面向工程输入的949组地震动记录数据库。在考虑震源类型差异的基础上,对地震动峰值、持时、频谱等参数进行分析,通过反应谱、Arias烈度等指标描述典型海底地震动特征。根据峰值加速度、显著持时等强度指标对海底地震动记录进行排序,给出基于不同地震动特征分类下的典型地震动记录。推荐的海底地震动可为考虑不同结构需求参数的典型海域工程结构时程分析提供输入地震动。  相似文献   

18.
提出采用宽频地震Kanai-Tajimi模型与速度脉冲He-Agrawal模型来模拟近场地震动,数值模拟验证了该近场地震模型的有效性。采用该模型定量分析了近场地震作用对桥梁结构地震响应的影响规律。近场地震动的脉冲持时是对结构产生破坏的一个重要因素,近场地震作用对桥梁结构的设计提出了更高的延性要求。  相似文献   

19.
近断层前方向性效应地震动含有高幅值,短持时的速度脉冲,与远场地震动相比存在显著差异。本文根据所选取的40条近断层地震波记录,用小波分析方法将原始记录分解为脉冲波部分和高频波部分,对弹性和非弹性单自由度体系进行分析,得出了以下结论:对于弹性体系,大约0.484倍的速度脉冲周期可以作为临界周期,脉冲波部分将对固有周期大于临界周期的结构的响应起主导作用,反之,高频波部分将会产生显著影响;对于非弹性体系,仅仅用等效速度脉冲方法模拟近断层地震动的计算精度将会受到延性系数?的影响,随着延性系数的增加,脉冲波部分满足精度要求的结构固有周期范围将明显缩小,并且向较低周期范围偏移;仅用等效速度脉冲模型来模拟近断层地震动具有一定的局限性。  相似文献   

20.
以主跨为1 490 m的润扬长江大桥为背景,采用ANSYS软件建立结构有限元模型,计算大跨度悬索桥动力特性。对黏滞阻尼器和软钢阻尼器进行参数敏感性分析,得出控制大跨度悬索桥地震响应的最优参数值,并分析一致激励和行波激励作用下黏滞阻尼器和软钢阻尼器减震效果。研究结果表明,黏滞阻尼器和软钢阻尼器对塔梁相对位移有较好的控制效果,但会使塔底内力有所增加;就位移控制而言,软钢阻尼器的效果更好;在低视波速区间内,黏滞阻尼器和软钢阻尼器减震效果明显存在波动特征;随着视波速的逐渐增大,黏滞阻尼器和软钢阻尼器减震效果受视波速的影响逐渐减小,悬索桥地震响应逐渐平缓,并趋于一致激励作用下的对应值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号