首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
疏散星团是探究银河系结构与演化的良好示踪体,一直以来颇受关注.之前关于疏散星团的研究中,仅有一小部分疏散星团有金属丰度参数,而且,金属丰度的测量,是基于不同质量的观测数据,采用了不同的方法.收集了一个年龄大于2 Gyr的老年疏散星团样本,通过整理这些星团成员星的金属丰度数据,一方面,以星团NGC 2682为例,对比了不同光谱巡天项目给出的星团成员星金属丰度的系统差异;另一方面,计算了星团成员星金属丰度的平均值和中位值,作为该疏散星团的金属丰度推荐值.此外,还利用该样本探究了银盘径向金属丰度梯度随时间的演化,结果表明,早期银盘有着更加陡峭的径向金属丰度梯度,随着演化时间的增加,银盘径向金属丰度梯度逐渐趋于平缓,为银盘化学演化模型提供了更加严格的观测约束.  相似文献   

2.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

3.
We perform an evolutionary multivariate analysis of a sample of 54 Galactic globular clusters with high-quality colour–magnitude diagrams and well-determined ages. The four parameters adopted for the analysis are: metallicity, age, maximum temperature on the horizontal branch and absolute V magnitude. Our cladistic analysis breaks the sample into three novel groups. An a posteriori kinematical analysis puts groups 1 and 2 in the halo, and group 3 in the thick disc. The halo and disc clusters separately follow a luminosity–metallicity relation of much weaker slope than galaxies. This property is used to propose a new criterion for distinguishing halo and disc clusters. A comparison of the distinct properties of the two halo groups with those of Galactic halo field stars indicates that the clusters of group 1 originated in the inner halo, while those of group 2 formed in the outer halo of the Galaxy. The inner halo clusters were presumably initially the most massive one, which allowed the formation of more strongly helium-enriched second generation stars, thus explaining the presence of Cepheids and of very hot horizontal-branch stars exclusively in this group. We thus conclude that the 'second parameter' is linked to the environment in which globular clusters form, the inner halo favouring the formation of the most massive clusters which subsequently become more strongly self-enriched than their counterparts of the galactic outer halo and disc.  相似文献   

4.
We apply the method of principal component analysis to a sample of simple stellar populations to select some age-sensitive spectral indices. Besides the well-known age-sensitive index, H β , we find that some other spectral indices have great potential to determine the age of stellar populations, such as G4300, Fe4383, C24668, and Mg b . In addition, we find that the sensitivity to age of these spectral indices depends on the metallicity of the simple stellar population (SSP): H β and G4300 are more suited to determine the age of the low-metallicity stellar population, C24668 and Mg b are more suited to the high-metallicity stellar population. The results suggest that the principal component analysis method provides a more objective and informative alternative to diagnostics by individual spectral lines.  相似文献   

5.
We present and analyse the kinematics and orbits for a sample of 488 open clusters (OCs) in the Galaxy. The velocity ellipsoid for our present sample is derived as  (σ U , σ V , σ W ) = (28.7, 15.8, 11.0) km s−1  which represents a young thin-disc population. We also confirm that the velocity dispersions increase with the age of a cluster subsample. The orbits of OCs are calculated with three Galactic gravitational potential models. The errors of orbital parameters are also calculated considering the intrinsic variation of the orbital parameters and the effects of observational uncertainties. The observational uncertainties dominate the errors of derived orbital parameters. The vertical motions of clusters calculated using different Galactic disc models are rather different. The observed radial metallicity gradient of clusters is derived with a slope of   b =−0.070 ± 0.011   dex kpc−1. The radial metallicity gradient of clusters based on their apogalactic distances is also derived with a slope of   b =−0.082 ± 0.014   dex kpc−1. The distribution of derived orbital eccentricities for OCs is very similar to that derived for the field population of dwarfs and giants in the thin disc.  相似文献   

6.
A comparison is made between the age–metallicity relations obtained from four different types of studies: F and G stars in the solar neighbourhood, analysis of open clusters, galactic structure studies with the stellar population synthesis technique and chemical evolution models. Metallicities of open clusters are corrected for the effects of the radial gradient, which we find to be −0.09 dex kpc−1 and most likely constant in time. We do not correct for the vertical gradient, because its existence and value are not firmly established.
Stars and clusters trace a similar age–metallicity relation, showing an excess of rather metal-rich objects in the age range 5–9 Gyr. Galactic structure studies tend to give a more metal-poor relation than chemical evolution models. Neither relation explains the presence of old, relatively metal-rich stars and clusters. This might be caused by uncertainties in the ages of the local stars, or pre-enrichment of the disc with material from the bulge, possibly as a result of a merger event in the early phases of the formation of our Galaxy.  相似文献   

7.
High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2–3 times higher than those derived from CELs – in H II regions – for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star‐forming dwarf and spiral galaxies at different redshifts. Additionally, high‐resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s‐elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E‐ELT will be of paramount interest to: (a) extend the studies of heavyelement recombination lines to low metallicity objects, (b) to extend abundance determinations of s‐elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The behaviour of the  Δν= 2 CO  bands around 2.3 μm was examined by comparing observed and synthetic spectra in stars in globular clusters of different metallicity. Changes in the 12C/13C isotopic ratio and the carbon abundances were investigated in stars from 3500–4900 K in the galactic globular clusters M71, M5, M3 and M13, covering the metallicity range from −0.7 to −1.6. We found relatively low carbon abundances that are not affected by the value of oxygen abundance. For most giants, the 12C/13C ratios determined are consistent with the equilibrium value for the CN cycle. This suggests complete mixing on the ascent of the red giant branch, in contrast to the substantially higher values predicted across this range of parameters by the current generation of models. We found some evidence for a larger dispersion of 12C/13C in giants of M71 of metallicity  [μ]=[M/H]=−0.7  in comparison with the giants of M3, M5 and M13, which are more metal deficient. Finally, we show evidence for lower 12C/13C in giants of globular clusters with lower metallicities, as predicted by theory.  相似文献   

9.
The mean metallicity of the Milky Way thin disc in the solar neighbourhood is still a matter of debate, and we recently proposed an upward revision. Our star sample was drawn from a set of solar neighbourhood dwarfs with photometric metallicities. In a very recent study, it has been suggested that our metallicity calibration, based on Geneva photometry, is biased. We show here that the effect detected is not a consequence of our adopted metallicity scale, and we confirm that our findings are robust. On the contrary, the application to Strömgren photometry of the Schuster & Nissen metallicity scale is problematic. Systematic discrepancies of  ∼0.1–0.3 dex  affect the photometric metallicity determination of metal-rich stars, on the colour interval  0.22 < b − y < 0.59  , i.e. including F and G stars. For F stars, it is shown that this is a consequence of a mismatch between the standard sequence   m 1( b − y )  of the Hyades used by Schuster & Nissen to calibrate their metallicity scale, and the system of Olsen. It means that although the calibration of Schuster & Nissen and Olsen's photometry are intrinsically correct, they are mutually incompatible for metal-rich F-type stars. For G stars, the discrepancy is most probably the continuation of the same problem, albeit worsened by the lack of spectroscopic calibrating stars. A corrected calibration is proposed that renders the calibration of Schuster & Nissen applicable to the catalogues of Olsen. We also give a simpler calibration referenced to the Hyades sequence, valid over the same colour and metallicity ranges.  相似文献   

10.
We carried out Washington system photometry of the intermediate-age Large Magellanic Cloud (LMC) star clusters NGC 2155 and SL 896 (LW 480). We derive ages and metallicities from the T 1 versus     colour–magnitude diagrams (CMDs). For the first time an age has been obtained for SL 896,     . For NGC 2155 we derive     . The two clusters basically define the lower age limit of the LMC age gap. In particular, NGC 2155 is confirmed as the oldest intermediate-age LMC cluster so far studied. The derived metallicities are     and     for NGC 2155 and SL 896, respectively. We also studied the CMDs of the surrounding fields, which have a dominant turn-off comparable to that of the clusters themselves, and similar metallicity, showing that one is dealing with an intermediate-age disc where clusters and field stars have the same origin. We inserted the present clusters in the LMC and Small Magellanic Cloud (SMC) age–metallicity relations, using a set of homogeneous determinations with the same method as in our previous studies, now totalling 15 LMC clusters and four SMC clusters, together with some additional values from the literature. The LMC and SMC age–metallicity relations appear to be remarkably complementary, since the SMC was actively star-forming during the LMC quiescent age gap epoch.  相似文献   

11.
The peculiar nova-like star PU Vul was observed spectroscopically from 1981 Sept 12 to 1983 Dec 11 at Yunnan Observatory and Beijing Observatory. In 1981 Sept, the star showed an absorption spectrum of the Balmer lines, the H,K and D lines, and some FeII, SrII and TiII lines. H was seen in emission in 1982 Oct and Hβ, in 1983 Sept. Both emissions were enhanced in 1983 Oct. and then dimmed since 1983 Nov. On 1983 Dec 11, Hβ might be absent, but the H was still visible. The spectral type was similar to that of an F giant during this period. This object may be an exceptionally slow nova and a binary consisting of an M giant and a hot companion.  相似文献   

12.
We have derived ages and metallicities from co-added spectra of 131 globular clusters associated with the giant elliptical galaxy NGC 4472. Based upon a calibration with Galactic globular clusters, we find that our sample of globular clusters in NGC 4472 span a metallicity range of approximately −1.6≤[Fe/H]≤0 dex. There is evidence of a radial metallicity gradient in the globular cluster system which is steeper than that seen in the underlying starlight. Determination of the absolute ages of the globular clusters is uncertain, but formally, the metal-poor population of globular clusters has an age of 14.5±4 Gyr and the metal-rich population is 13.8±6 Gyr old. Monte Carlo simulations indicate that the globular cluster populations present in these data are older than 6 Gyr at the 95 per cent confidence level. We find that within the uncertainties, the globular clusters are old and coeval, implying that the bimodality seen in the broadband colours primarily reflects metallicity and not age differences.  相似文献   

13.
We present theoretical evolutionary sequences of intermediate-mass stars  ( M = 3 − 6.5 M)  with metallicity   Z = 0.004  . Our goal is to test whether the self-enrichment scenario by massive asymptotic giant branch stars may work for the high-metallicity globular clusters, after previous works by the same group showed that the theoretical yields by this class of objects can reproduce the observed trends among the abundances of some elements, namely the O–Al and O–Na anticorrelations, at intermediate metallicities, i.e.  [Fe/H]=−1.3  . We find that the increase in the metallicity favours only a modest decrease of the luminosity and the temperature at the bottom of the envelope for the same core mass, and also the efficiency of the third dredge-up is scarcely altered. On the contrary, differences are found in the yields, due to the different impact that processes with the same efficiency have on the overall abundance of envelopes with different metallicities. We expect the same qualitative patterns as in the intermediate-metallicity case, but the slopes of some of the relationships among the abundances of some elements are different. We compare the sodium–oxygen anticorrelation for clusters of intermediate metallicity ( Z ≈ 10−3) and clusters of metallicity large as in these new models. Although the observational data are still too scarce, the models are consistent with the observed trends, provided that only stars of   M ≳ 5 M  contribute to self-enrichment.  相似文献   

14.
The analysis of the kinematics of solar neighbourhood stars shows that the low- and high-metallicity tails of the thin disc are populated by objects which orbital properties suggest an origin in the outer and inner Galactic disc, respectively. Signatures of radial migration are identified in various recent samples, and are shown to be responsible for the high-metallicity dispersion in the age–metallicity distribution. Most importantly, it is shown that the population of low-metallicity wanderers of the thin disc (−0.7 < [Fe/H] < −0.3 dex) is also responsible for the apparent hiatus in metallicity with the thick disc (which terminal metallicity is about −0.2 dex). It implies that the thin disc at the solar circle has started to form stars at about this same metallicity. This is also consistent with the fact that 'transition' objects, which have α-element abundance intermediate between that of the thick and thin discs, are found in the range [−0.4, −0.2] dex. Once the metal-poor thin disc stars are recognized for what they are – wanderers from the outer thin disc – the parenthood between the two discs can be identified on stars genuinely formed at the solar circle through an evolutionary sequence in [α/Fe] and [Fe/H]. Another consequence is that stars that can be considered as truly resulting of the chemical evolution at the solar circle have a metallicity restricted to about [−0.2, +0.2] dex, confirming an old idea that most chemical evolution in the Milky Way have preceded the thin disc formation.  相似文献   

15.
We present integrated JHK S Two-Micron All-Sky Survey photometry and a compilation of integrated-light optical photoelectric measurements for 84 star clusters in the Magellanic Clouds. These clusters range in age from ≈200 Myr to >10 Gyr, and have [Fe/H] values from −2.2 to −0.1 dex. We find a spread in the intrinsic colours of clusters with similar ages and metallicities, at least some of which is due to stochastic fluctuations in the number of bright stars residing in low-mass clusters. We use 54 clusters with the most-reliable age and metallicity estimates as test particles to evaluate the performance of four widely used simple stellar population models in the optical/near-infrared (near-IR) colour–colour space. All models reproduce the reddening-corrected colours of the old (≥10 Gyr) globular clusters quite well, but model performance varies at younger ages. In order to account for the effects of stochastic fluctuations in individual clusters, we provide composite   B − V , B − J , V − J , V − K S  and   J − K S  colours for Magellanic Cloud clusters in several different age intervals. The accumulated masses for most composite clusters are higher than that needed to keep luminosity variations due to stochastic fluctuations below the 10 per cent level. The colours of the composite clusters are clearly distinct in optical–near-IR colour–colour space for the following intervals of age: >10 Gyr, 2–9 Gyr, 1–2 Gyr, and 200 Myr−1 Gyr. This suggests that a combination of optical plus near-IR colours can be used to differentiate clusters of different age and metallicity.  相似文献   

16.
Abundances of O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Fe, Ni and Ba are determined for 30 nearby lower-main-sequence stars in the Northern sky using high-resolution, high signal-to-noise ratio spectra. Our results show an equilibrium of  [Fe/H]I  and  [Fe/H]II  and a much smaller star-to-star scatter of the abundance ratios as a function of metallicity compared with the results of Kotoneva et al. The non-local thermodynamic equilibrium (non-LTE) corrections for oxygen are considered and found to be small  (∼−0.04 dex)  . A flat trend of [O/Fe] exists over the whole metallicity range. The non-LTE effects for some important elements are discussed, and it is found that the abundance pattern for our programme stars is very similar to that of F and G dwarfs.  相似文献   

17.
Using the recently commissioned multi‐object spectrograph AAOmega on the 3.9m AAT we have obtained mediumresolution near‐infrared spectra for 10 500 stars in and around five southern globular clusters. The targets were 47 Tuc, M12, M30, M55 and NGC 288. We have measured radial velocities to ± 1 kms 1 with the cross correlation method and estimated metallicity, effective temperature, surface gravity and rotational velocity for each star by fitting synthetic model spectra. An analysis of the velocity maps and velocity dispersion of member stars revealed systemic rotation in four of the target clusters. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We have assembled a catalogue of relative ages, metallicities and abundance ratios for about 150 local galaxies in field, group and cluster environments. The galaxies span morphological types from cD and ellipticals, to late-type spirals. Ages and metallicities were estimated from high-quality published spectral line indices using Worthey & Ottaviani (1997) single stellar population evolutionary models.
The identification of galaxy age as a fourth parameter in the fundamental plane ( Forbes, Ponman & Brown 1998 ) is confirmed by our larger sample of ages. We investigate trends between age and metallicity, and with other physical parameters of the galaxies, such as ellipticity, luminosity and kinematic anisotropy. We demonstrate the existence of a galaxy age–metallicity relation similar to that seen for local galactic disc stars, whereby young galaxies have high metallicity, while old galaxies span a large range in metallicities.
We also investigate the influence of environment and morphology on the galaxy age and metallicity, especially the predictions made by semi-analytic hierarchical clustering models (HCM). We confirm that non-cluster ellipticals are indeed younger on average than cluster ellipticals as predicted by the HCM models. However we also find a trend for the more luminous galaxies to have a higher [Mg/Fe] ratio than the lower luminosity galaxies, which is opposite to the expectation from HCM models.  相似文献   

19.
We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5. Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model, we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd, Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]> -2.5. Finally, we discuss our results and deduce some importa  相似文献   

20.
Sulphur is a volatile α ‐element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal‐poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal‐poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen ζ line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra‐red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal‐poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号