首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. W. Hood  U. Anzer 《Solar physics》1990,126(1):117-133
A class of 2-D models of solar quiescent prominences, with normal polarity, is presented. These represent an extension to the Kippenhahn-Schlüter model for which the prominence configuration matches smoothly onto an external non-potential coronal solution of a constant field. Using typical prominence values a model is constructed which also matches the coronal conditions. It is found that the magnetic field component along the prominence influences the internal structure of the prominence. A simple extension to the basic models is indicated as a means of taking a lower boundary of the prominence and eliminating parasitic polarities in the photosphere.  相似文献   

2.
Pneuman  G. W. 《Solar physics》1983,88(1-2):219-239
A model for solar quiescent prominences nested in a Figure 8 magnetic field topology is developed. This topology is argued to be the natural consequence of the distention of bipolar regions upward into the corona. If this distention is slow enough so that hydrostatic equilibrium holds approximately along the field lines, the transverse gas pressure forces fall exponentially with height whereas the inward Lorentz forces fall as a power law. At a low height in the corona, the pressure forces cannot balance the Lorentz forces provided the field lines remain tied to the photosphere and an inward collapse with subsequent reconnection at the point of closest approach should occur. Because of initial shear in the magnetic field, the reconnection would produce isolated helices above the point of reconnection since field lines would not interact with themselves but with their neighbors. This resulting topology produces a field above the elevated neutral line which is opposite in polarity to that of the photospheric field as in the current sheet models of Kuperus and Tandberg-Hanssen (1967). Raadu and Kuperus (1973), Kuperus and Raadu (1974), and Raadu (1979) and in agreement with recent observations of Leroy (1982), and Leroy et al. (1983).Assuming the isolated helices formed by reconnection are insulated from coronal thermal conduction and heating, the radiative cooling process and condensation is considered for the temperature range of 104-6000 K. This condensation results in a steady downflow to the bottom of the helices as the temperature scale-height falls, thus forming a dense, cool, prominence at the bottom of the helical configuration resting on the elevated neutral line with the remainder of the helix being essentially evacuated of material. We identify this neutral line at the bottom of the prominence with the sharp lower edge often seen when viewing quiescent prominences side-on and the evacuated helix with the coronal cavity observed around prominences when seen during total eclipses.Downflow speeds associated with the condensation process are calculated for prominence temperatures and yield velocities in the range of the observed downflows of about 1 km s–1.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   

4.
Lites  B.W.  Low  B.C. 《Solar physics》1997,174(1-2):91-98
This paper presents an interpretation of the evolution of the vector magnetic field at the photosphere based on measurements of the advanced Stokes polarimeter, along with chromospheric H from the Lockheed instrument operating on La Palma and X-ray images of the corona from Yohkoh. These measurements are consistent with the emergence of a nearly closed magnetic structure from the solar interior into the corona. The highly non-potential field topology inferred from the data suggests that strong field-aligned currents exist in the emergent magnetic structure as it buoyantly rises through the photosphere. Material trapped in this closed structure is pulled upward to later condense into a prominence. By analogy of this small active region evolution with the observed properties of large quiescent prominences, we speculate that this process might also be operative on a much larger scale. A 3-dimensional magnetostatic model is presented which has many topological features in common with the observations.  相似文献   

5.
Joarder  P. S.  Nakariakov  V. M.  Roberts  B. 《Solar physics》1997,173(1):81-101
Oscillatory spectra of solar quiescent prominences highlight the importance of incorporating the effect of prominence fine-structure in the theory of prominence oscillations. We determine the magnetohydrodynamic modes of oscillation of an elementary, zero- model of a prominence fibril, arguing that the fast body kink modes, namely, the string and the internal magnetic Love modes, produce the observed short periodicities in prominence fine-structures. Estimates for the periods of these modes are presented: the modes are subject to testing in future high-resolution observations.  相似文献   

6.
In the dynamical model of quiescent prominences presented in this paper, it is assumed that the ever-changing velocity field and brightness of the fine structure is due to MHD turbulence driven by an Alfvén-wave flux from below. It is shown that these waves become highly non-linear and are dissipated over relatively short scales in prominence matter. For magnetic field strengths lower than those observed in quiescent prominences, no closed arch structure can exist with the physical parameters observed. For higher field strengths the conditions for the creation of turbulence are not fulfilled. The momentum gained by prominence matter in the dissipation process, is shown to be of the right order of magnitude to provide the supporting force against gravity. ‘Edge’ effects find a simple explanation within the framework of this hypothesis. In the upper regions of a prominence one result of the dissipation may be the formation of open magnetic configurations, in keeping with the presence of streamers connected with quiescent prominences. Observational tests are proposed and discussed.  相似文献   

7.
B. C. Low 《Solar physics》1982,75(1-2):119-131
We present a simple magnetostatic theory of the thin vertical filaments that make up the quiescent prominence plasma as revealed by fine spatial resolution H photographs. A class of exact equilibrium solutions is obtained describing a horizontal row of long vertical filaments whose weights are supported by bowed magnetic field lines. A free function is available to generate different assortments of filament sizes and spacings, as well as different density and temperature variations. The classic Kippenhahn-Schlüter solution for a long sheet without filamentary structures is a particular member of this class of solutions. The role of the magnetic field in supporting and thermally shielding the filament plasma is illustrated. It is found that the filament can have a sharp transition perpendicular to the local field, whereas the transition in the direction of the local field is necessarily diffuse. A consequence of the filamentary structure is that its support by the Lorentz force requires the electric current to have a component along the magnetic field. This electric current flowing into the rarefied region around the prominence can contain substantial energy stored in the form of force-free magnetic fields. This novel feature has implications for the heating and the disruption of prominences.  相似文献   

8.
Here I present a simple gravitational model for the flarelike brightenings of the chromosphere that follow most disparitions brusques (disappearing filaments). I assume the ascending prominence material is lifted out of the initially stable magnetic dips that characterize quiescent prominences and falls along the arched field lines into the chromosphere where the kinetic energy of fall is dissipated in the bright areas. The examination of prominence and chromospheric characteristics leads naturally to many predictions and relations during and after prominence eruptions. In general the predictions are specific, but the observations of necessary detail and quality are nonexistent; however, the predictions appear to agree with the data that are available. The model appears to explain all non-active-region brightenings of the chromosphere that follow disparitions brusques and an unknown fraction of active-region flares. The conclusion is that two-ribbon flares are due to the disparitions brusques chromospheric flarelike brightening mechanism. In this paper it will become clear that many specific observations in and out of active regions will be necessary to test the predictions of the model given here.  相似文献   

9.
Observations of internal structure and development of four helical prominences are presented. We assume that the helically twisted fine structure threads are outlining magnetic field lines and we found that it is possible to describe the magnetic fields by the uniform twist configuration, with the twists ranging between 2 and 7. The estimated lower limits for the magnetic fields were about 20 G which give lower limits for the currents flowing along the prominences in the range between 2 × 1010 A and 2 × 1011 A and current densities at the axis of the prominences about 10-4 A m-2. The upper limit of electron drift velocity could be estimated as 1 m s-1, which is far below the critical velocities for the onset of plasma microinstabilities.The stability of the studied prominences is discussed and the criteria for the onset of eruptive instability are established for a prominence modelled as a twisted and elliptically curved magnetic flux tube which is anchored in the photosphere and affected by its mirror-current. The eruption starts when the prominence attains a critical height which must be larger than half of the footpoint separation and depends on the values of twist, radius, and footpoint distance of the magnetic flux tube. The observed examples of eruptive prominences agree very well with the predictions. Possible applications to the two-ribbon flare process are outlined.Properties of stable cylindrical prominences in equilibrium are analyzed and a criterion for the distinction between the Kuperus-Raadu and Kippenhahn-Schlüter types of prominences is proposed. According to established criteria, two of the studied prominences were of the Kuperus-Raadu type, while the other two were of the Kippenhahn-Schlüter type.  相似文献   

10.
Analysis of observations from both space-borne (LASCO/SOHO, Skylab and Solar Maximum Mission) and ground-based (Mauna Loa Observatory) instruments show that there are two types of coronal mass ejections (CMEs), fast CMEs and slow CMEs. Fast CMEs start with a high initial speed, which remains more or less constant, while slow CMEs start with a low initial speed, but show a gradual acceleration. To explain the difference between the two types of CMEs, Low and Zhang (2002) proposed that it resulted from a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences, i.e., a normal prominence configuration will lead to a fast CME, while an inverse quiescent prominence results in a slow CME. In this paper we explore a different scenario to explain the existence of fast and slow CMEs. Postulating only an inverse topology for the quiescent prominences, we show that fast and slow CMEs result from different physical processes responsible for the destabilization of the coronal magnetic field and for the initiation and launching of the CME. We use a 2.5-D, time-dependent streamer and flux-rope magnetohydrodynamic (MHD) model (Wu and Guo, 1997) and investigate three initiation processes, viz. (1) injecting of magnetic flux into the flux-rope, thereby causing an additional Lorentz force that will destabilize the streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from the flux-rope and triggering a magnetic buoyancy force that causes the flux-rope to lift and launch a CME; and (3) introducing additional heating into the flux-rope, thereby simulating an active-region flux-rope accompanied by a flare to launch a CME. We present 12 numerical tests using these three driving mechanisms either alone or in various combinations. The results show that both fast and slow CMEs can be obtained from an inverse prominence configuration subjected to one or more of these three different initiation processes.  相似文献   

11.
Hirayama  Tadashi 《Solar physics》1985,100(1-2):415-434
We review observational studies of solar prominences with some reference to theoretical understandings. We lay emphasis on the following findings: (1) An important discovery was made by Leroy, Bommier, and Sahal-Bréchot concerning the direction of the magnetic field inside some high-altitude, high-latitude prominences, where the field vector points in the opposite direction from the one which would be expected from the potential field calculated from the observed photospheric magnetic field. (2) Landman suggests the possibility of a high total density of 10–11 g cm –3 for the main body of quiescent prominences, 50 times higher than the value hitherto believed. (3) Flow patterns, nearly parallel to the magnetic neutral lines, were detected in the 105 K plasma near and in prominences. (4) Coronal loop structures were found overlying prominences as viewed from X-ray photographs. We propose also an evolutionary scheme by taking the magnetic field topologies into account.The fundamental question why a prominence is present remains basically unanswered.  相似文献   

12.
With thespectro-coronagraph and themultichannel subtractive double pass spectrograph (MSDP) at the Pic du Midi Observatory two quiescent prominences were observed simultaneously. From the spectro-coronagraph observations 2D maps of Hei 10830 , Fexiii 10798 and 10747 line intensities were obtained. In addition, we obtained 2D maps of the ratioR of the two iron lines. This ratio is used as a diagnostic for determining the density of the hot coronal plasma surrounding prominences. We found that the electron density is higher at the location of the prominences than in the corona, whereas small regions (40) of lower electron density are unevenly distributed around the prominences indicating that the surrounding corona is highly inhomogeneous. The density of the cavity is reduced by a factor 1.5 compared to the density of the prominence environment (5 × 108 cm–3). We discuss the existence of cavities around these prominences according to the orientation of their axes relative to the line of sight and according to the velocity field inside the prominences. Constraints on models for prominence formation are derived.  相似文献   

13.
Frances Tang 《Solar physics》1987,107(2):233-237
A survey of two years (1973 and 1979) of quiescent prominences reveals that substantially more (20 and 96% more, respectively, in the two years surveyed) quiescent prominences were formed on neutral lines between bipolar regions than on neutral lines inside bipolar regions.Present prominence models are based on the magnetic field configuration of the neutral lines of single bipolar regions, possibly because it is assumed that most prominences evolved from there. In view our new finding, a new model is needed in which the evolution begins at the boundary of two adjacent bipolar regions.  相似文献   

14.
Pécseli  Hans  Engvold  OddbjØrn 《Solar physics》2000,194(1):73-86
The nature of thin, highly inclined threads observed in quiescent prominences has puzzled solar physicists for a long time. When assuming that the threads represent truly inclined magnetic fields, the supporting mechanism of prominence plasma against gravity has remained an open issue. This paper examines the levitation of prominence plasma exerted by weakly damped MHD waves in nearly vertical magnetic flux tubes. It is shown that the wave damping, and resulting `radiation pressure', caused predominantly by ion-neutral collisions in the `cold' prominence plasma, may balance the acceleration of gravity provided the oscillation frequency is 2 rad s–1 (f0.5 Hz). Such short wave periods may be the result of small-scale magnetic reconnections in the highly fragmentary magnetic field of quiescent prominences. In the proposed model, the wave induced levitation acts predominantly on plasma – neutral gas mixtures.  相似文献   

15.
A. Poland  U. Anzer 《Solar physics》1971,19(2):401-413
The energy balance for cool quiescent prominences is examined using a 6000 km, 6000 K isothermal slab model prominence with a density gradient dictated by a modified Kippenhahn-Schlüter model. The model is irradiated from both sides by the coronal, chromospheric, and photospheric radiation fields. The radiative transfer problem is solved in detail for the Lyman continuum and H to determine the net radiative energy loss for hydrogen. An estimate of the energy loss for Ca ii H and K indicates that this source of energy loss is unimportant when compared with the hydrogen radiation. The radiative energy loss is easily balanced by the conductive energy gain from the corona.The only difficulty with our model is that the total hydrogen density must be of the order of 3 × 1012/ cm3 to match the n = 2 population density of 5 × 104/cm3 obtained from observation. To support a prominence of this density and a thickness of 6000 km against gravity requires magnetic fields of the order of 20 G which is much higher than the average magnetic field in quiescent prominences deduced from limb observations. Two possible explanations for this discrepancy are given.Currently at the Max-Planck-Institut für Physik und Astrophysik, München, Germany.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
A systematic study of the internal horizontal (line-of-sight) motions of quiescent prominences which were observed at the limb has been made by using fourier techniques to analyse the shift of the Ca ii K line as a function of height above the limb. The results indicate that a characteristic size for the velocity elements is present in 70% of the 13 prominences studied. This size of 4700 km is attributed to Alfvén waves induced by horizontal convective motions in the photosphere as previously suggested by Malville. The qualitative aspects of the observations are described by a simple model which is based on this hypothesis.Presently at Department of Astronomy, Pennsylvania State University, 525 Davey Lab., University Park, PA 16802.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

17.
We present measurements of electric fields in quiescent prominences and in a small flare surge, obtained with the CRI electrograph at the NSO/SP 40 cm coronagraph, in 1993 and 1994. Our results on the 9 brightest quiescent prominences enable us to place r.m.s. upper limits ofE t < 2 – 5 V cm–1 on the component ofE transverse to the line of sight. We show that these upper limits may be difficult to reconcile with non-ideal MHD models of quiescent prominences formed in extended neutral sheets, whether or not the tearing mode instability is present. They do, however, seem consistent with ideal MHD models of prominence support. We point out also that these upper limits are within a factor 4 of the minimum value of anistropic electric field that exists due to motional Stark effect in any thermal plasma permeated by a directed magnetic field.Our data on the flare surge suggest an electric field of intensityE 35 V cm–1, oriented approximately parallel to the inferred magnetic field. This detection ofE needs to be verified in other flares. But we note that a detectableE would not be expected in the current interruption flare mechanism, if only a single double layer is present. We show further that the observed relatively narrow, approximately-Gaussian, and only slightly Doppler-shifted Paschen lines, seem inconsistent with the multiple double layers invoked in other models based on the current interruption mechanism. Our detection ofE does seem consistent with reconnection (including tearing-mode) models of flares, provided the field-aligned electrical conductivity is anomalous over substantial volumes of the plasma circuit joining the reconnecting domain to the photosphere.  相似文献   

18.
It is argued that the quiscent prominences are a natural consequence of the formation and thermal instability of current sheets in the corona. Thus observation and theory of prominences can give vital information on the presence of currents and the topology of magnetic fields in the corona. Conversely by developing the theory of the structure and evolution of current sheets under coronal conditions we can attempt to gain a comprehensive understanding of the structure, evolution, and mass and energy balance of quiescent prominences. A stability analysis for coronal material permeated by a vertical magnetic field rooted in the photosphere, indicates that a condensation will take the form of a thin vertical wedge of cool matter. The development of a finite condensation is followed and it is shown that photospheric line tying is only important in the initial stages. A perturbation analysis of vertical motions at the neutral sheet shows that thermal instability can lead to overstable oscillations. Cooling of coronal material can lead to both upward and downward mass motions, and gravitational energy release is important to the thermal balance of prominences. Relevant optical and radio observations are discussed. Synoptic observations of the development of active regions and magnetic fields are needed to test the basic hypothesis of the formation of prominences from neutral sheets.  相似文献   

19.
Plunkett  S.P.  Vourlidas  A.  Šimberová  S.  Karlický  M.  Kotrč  P.  Heinzel  P.  Kupryakov  Yu.A.  Guo  W.P.  Wu  S.T. 《Solar physics》2000,194(2):371-391
Coronal mass ejections (CMEs) are frequently associated with erupting prominences near the solar surface. A spectacular eruption of the southern polar crown prominence was observed on 2 June 1998, accompanied by a CME that was well-observed by the LASCO coronagraphs on SOHO. The prominence was observed in its quiescent state and was followed throughout its eruption by the SOHO EIT and later by LASCO as the bright, twisted core of the CME. Ground-based H observations of the prominence were obtained at the Ondejov Observatory in the Czech Republic. A great deal of fine structure was observed within the prominence as it erupted. The prominence motion was found to rotate about its axis as it moved outward. The CME contained a helical structure that is consistent with the ejection of a magnetic flux rope from the Sun. Similar structures have been observed by LASCO in many other CMEs. The relationship of the flux rope to other structures in the CME is often not clear. In this event, the prominence clearly lies near the trailing edge of the structure identified as a flux rope. This structure can be observed from the onset of the CME in the low corona all the way out to the edge of the LASCO field of view. The initiation and evolution of the CME are modeled using a fully self-consistent, 3D axisymmetric, MHD code.  相似文献   

20.
We compare observations of an eruptive and a quiescent prominence in order to better understand the energetic processes in an eruptive prominence. Observations of an eruptive prominence were obtained in H, several UV emission lines (1215–1640 Å), and coronal white light at approximately 19:00 UT on September 20, 1980. The data we present shows the development of the eruption in the H and UV emission lines and is compared with the intensities from similar observations of a quiescent prominence. While the event is coincident with some coronal changes, above 1.2 and up to 1.5 solar radii, it does not result in a true coronal mass ejection event.The comparison between the eruptive and quiescent prominences reveals several differences which suggest that the activation consists not only of a mechanical movement of material, but also changes in the temperature of the prominence plasma. Some prominence material that does not seem to participate in the large scale prominence motion is heated during the eruptive event. Most of this material is heated to transition zone temperatures with almost no cool core (i.e., no or very little H emission). The behavior indicates that there are structures that are first cool and then heat up to transition zone temperatures (apparently remaining stable for some time at these temperatures). Since this is an unstable temperature region for prominence type structures the energy transport that allows this is not understood and presents an interesting theoretical problem.Member of the Carrera del Investigador, CONICET, Argentina, presently at The University of Alabama in Huntsville.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号