首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critical for the management of artificial recharge operations is detailed knowledge of ground water dynamics near spreading areas. Geochemical tracer techniques including stable isotopes of water, tritium/helium-3 (T/3He) dating, and deliberate gas tracer experiments are ideally suited for these investigations. These tracers were used to evaluate flow near an artificial recharge site in northern Orange County, California, where approximately 2.5 x 10(8) m3 (200,000 acre-feet) of water are recharged annually. T/3He ages show that most of the relatively shallow ground water within 3 km of the recharge facilities have apparent ages < 2 years; further downgradient apparent ages increase, reaching > 20 years at approximately 6 km. Gas tracer experiments using sulfur hexafluoride and xenon isotopes were conducted from the Santa Ana River and two spreading basins. These tracers were followed in the ground water for more than two years, allowing subsurface flow patterns and flow times to be quantified. Results demonstrate that mean horizontal ground water velocities range from < 1 to > 4 km/year. The leading edges of the tracer patch moved at velocities about twice as fast as the center of mass. Leading edge velocities are important when considering the potential transport of microbes and other "time sensitive" contaminants and cannot be determined easily with other methods. T/3He apparent ages and tracer travel times agreed within the analytical uncertainty at 16 of 19 narrow screened monitoring wells. By combining these techniques, ground water flow was imaged with time scales on the order of weeks to decades.  相似文献   

2.
Some conceptual models suggest that baseflow in agriculturally fragmented watersheds may contain little, if any, groundwater. This has critical implications for stream quality and ecosystem functioning. Here, we (a) identify the sources and flowpaths contributing to baseflow using 222Rn and 87Sr/86Sr and (b) quantify mean apparent ages of groundwater and baseflow using multiple isotopic tracers (CFC, SF6, 36Cl, and 3H) in 4 small (0.08 to 0.64 km2) tributary catchments to the Wabash River in Indiana, USA. 222Rn activities and 87Sr/86Sr ratios indicate that baseflow in 3 catchments is sourced primarily from groundwater; baseflow in the fourth is dominated by a source similar to agricultural run‐off. CFC‐12 data indicate that springs in 1 catchment are discharging significant proportions of water that recharged between 1974 (42 ± 2 years) and 1961 (55 ± 2 years). Those same springs have 36Cl/Cl ratios between 1,381.08 ± 29.37 (×10?15) and 1,530.64 ± 27.65 (×10?15) indicating that a substantial proportion of the discharge likely recharged between 1975 (41 years) and 1950 (66 years). Groundwater samples collected from streambed mini‐piezometers in a separate catchment have CFC‐12 concentrations indicating that a large proportion of the recharge occurred between 1948 (68 ± 2 years) and 1950 (66 ± 2 years). Repeat sampling conducted in September 2015 after above‐average summer rainfall did not show significant decreases in mean apparent age. The relatively old ages observed in 3 of the catchments can be explained by geological complexities that are likely present in all 4 catchments, but overwhelmed by flow from the shallow phreatic aquifer in the fourth catchment.  相似文献   

3.
Noble gas isotopes (3He, 4He, Ne, Ar, Kr, Xe), tritium (3H), chlorofluorocarbons (CFCs) and dissolved oxygen (O2) were seasonally measured in a small groundwater system recharged by infiltration of river water at Linsental, northeastern Switzerland. All Groundwater samples contained an excess of atmospheric noble gases (‘excess air’) usually with an elemental composition equal to air. The concentrations of atmospheric noble gases in the groundwater were used to calculate the excess air component and the water temperature at recharge. The noble gas temperatures (NGTs) in the boreholes close to the river vary seasonally, however, the average NGT of all samples lies close to the mean annual temperature of the river water. Groundwater ages were calculated using the tritium/helium-3 (3H/3He) dating method. The water ages of the samples obtained near the river depend on the amount of recently infiltrated river water and are young during times of active river discharge. In contrast, the mean water age of about 3 years of the deep aquifer remained nearly constant over the sampling period. The observed CFC-11 (CFCl3) and CFC-12 (CF2Cl2) concentrations are significantly higher than the atmospheric equilibrium concentrations and therefore CFCs do not provide any direct information on the residence time of the groundwater. Nevertheless, the CFC excess in the groundwater shows a linear increase with the 3H/3He age. Additionally, both accumulation of radiogenic He (4Herad) and O2 consumption are strongly correlated with residence time. All these correlations can be interpreted either in terms of mixing of recently infiltrated river water with older groundwater or in terms of accumulation/consumption rates.  相似文献   

4.
Littlefield Springs discharge about 1.6 m3/s along a 10‐km reach of the Virgin River in northwestern Arizona. Understanding their source is important for salinity control in the Colorado River Basin. Environmental tracers suggest that Littlefield Springs are a mixture of older groundwater from the regional Great Basin carbonate aquifer and modern (post‐1950s) seepage from the Virgin River. While corrected 14C apparent ages range from 1 to 9 ka, large amounts of nucleogenic 4He and low 3He/4He ratios suggest that the carbonate aquifer component is likely even older Pleistocene recharge. Modeled infiltration of precipitation, hydrogeologic cross sections, and hydraulic gradients all indicate recharge to the carbonate aquifer likely occurs in the Clover and Bull Valley Mountains along the northern part of the watershed, rather than in the nearby Virgin Mountains. This high‐altitude recharge is supported by relatively cool noble‐gas recharge temperatures and isotopically depleted δ2H and δ18O. Excess (crustal) SF6 and 4He precluded dating of the modern component of water from Littlefield Springs using SF6 and 3H/3He methods. Assuming a lumped‐parameter model with a binary mixture of two piston‐flow components, Cl?/Br?, Cl?/F?, δ2H, and CFCs indicate the mixture is about 60% Virgin River water and 40% groundwater from the carbonate aquifer, with an approximately 30‐year groundwater travel time for Virgin River seepage to re‐emerge at Littlefield Springs. This suggests that removal of high‐salinity sources upstream of the Virgin River Gorge would reduce the salinity of water discharging from Littlefield Springs into the Virgin River within a few decades.  相似文献   

5.
Estimation of groundwater residence time using the 36Cl bomb pulse   总被引:1,自引:0,他引:1  
We propose a methodology for estimating the residence time of groundwater based on bomb-produced (36)Cl. Water samples were collected from 28 springs and 2 flowing wells located around Mt. Fuji, Central Japan. (36)Cl/Cl ratios in the water samples, determined by accelerator mass spectrometry (AMS), were between 43 × 10(-15) and 412 × 10(-15). A reference time series of the above-background (i.e., bomb-derived) (36)Cl concentration was constructed by linearly scaling the background-corrected Dye-3 data according to the estimated total bomb-produced (36)Cl fallout in the Mt. Fuji area. Assuming piston flow transport, estimates of residence time were obtained by comparing the measured bomb-derived (36)Cl concentrations in spring water with the reference curve. The distribution of (36)Cl-based residence times is basically consistent with that of tritium-based estimates calculated from data presented in previous studies, although the estimated residence times differ between the two tracers. This discrepancy may reflect chlorine recycling via vegetation or the relatively small change in fallout rate, approximately since 1975, which would give rise to large uncertainties in (36)Cl-based estimates of recharge for the period, approximately since 1975. Given the estimated ages for groundwater from flowing wells, dating based on a (36)Cl bomb pulse may be more reliable and sensitive for groundwater recharged before 1975, back as far as the mid-1950s.  相似文献   

6.
Allen DM 《Ground water》2004,42(1):17-31
Stable isotopes of 18O and 2H in water, and 34S and 18O in dissolved SO4, are used to verify the interpretation of the chemical evolution and proposed sources of salinity for two islands that have undergone postglacial rebound. Results for delta18O and delta34S in dissolved SO4 on the Gulf Islands, southwest British Columbia, Canada, suggest a three-component mixing between (1) atmospheric SO4 derived largely from recharge of meteoric origin, (2) modern marine SO4 associated with either modern-day salt water intrusion or Pleistocene age sea water, and (3) terrestrial SO4. The age of the marine SO4 is uncertain based on the geochemistry and SO4 isotopes alone. Two options for mixing of saline ground waters are proposed--either between current-day marine SO4 and atmospheric SO4, or between older (Pleistocene age) marine SO4 and atmospheric SO4, delta18O and delta2H compositions are relatively consistent between both islands, with a few samples showing evidence of mixing with water that is a hybrid mixture of Fraser River water and ocean water. The isotopic composition of this hybrid water is approximately delta18O = 10 per thousand. delta18O and delta2H values for many saline ground waters plot close to the global meteoric water line, which is distinctly different from the local meteoric water line. This suggests a meteoric origin for ground waters that is different from the current isotopic composition of meteoric waters. It is proposed these waters may be late Pleistocene in age and were recharged when the island was submerged below sea level and prior to rebound at the end of the last glaciation.  相似文献   

7.
The potential of luminescence dating of high-alpine lacustrine sediments is tested on samples taken from three high-altitude moraine-bounded lakes in the Swiss Alps. Independent age control is provided by radiocarbon ages and detailed palynological data in all cases. All samples show good luminescence characteristics (no thermal transfer, good dose recovery and recycling), but two samples show rather low quartz signals. Radioactive disequilibria in the uranium decay chain observed in one sample are accounted for by using a dynamic modelling approach. Because all cores had largely dried out and water content had not been measured after sampling, we developed a modern limnological approach to retrospectively establish palaeo-water content. Applying average water content values from a dataset of modern sediments with similar characteristics to the samples investigated here we obtained ages that match the independent age control. Whereas the low-signal quartz separates consistently underestimate these ages, the polymineral samples more accurately match them, do not suffer from anomalous fading and are thus considered reliable. This study demonstrates for the first time that applying luminescence dating to high-alpine, ice-proximal lacustrine sediments is a promising avenue to obtain a chronology for such depositional environments.  相似文献   

8.
A comprehensive study of a sandy aquifer of deltaic origin in southern Poland included water chemistry, isotopes, dissolved trace gases and transport modelling. Tritium, sulphur hexafluoride (SF6) and freons (F‐11, F‐12 and F‐113) showed the presence of modern waters in the recharge areas and shallow confined parts of the aquifer. The presence of older Holocene waters farther from the recharge areas was indicated by lack of 3H, SF6 contents ≤0·02 fmol l−1 and relatively low 14C values. The discharge from the system is by upward seepage in the valley of a major river. Pre‐Holocene waters of a cooler climate, identified on the basis of δ18O, δ2H, 14C, Ne and Ar data, were found in some distant wells. Concentrations of N2, Ne and Ar determined by gas chromatography were used for calculating the noble gas temperatures, air excess needed for correction of SF6, and nitrogen content released by denitrification process. The time series of 3H content available for some wells supplied quantitative information on age distributions and the total mean ages of flow through the unsaturated and saturated zones. The derived 3H age distributions turned out to be very wide, with mean values in the range of about 30 to 160 years. For each well with determined 3H age, the SF6 data showed either a lower age range or the possibility of a lower age as expected due to shorter travel times of SF6 through the unsaturated zone, which most probably also resulted in different types of age distributions of these tracers. Freons appeared to be of little use for individual age determinations. A quantitative estimation of two‐component mixing from SF63H relations is not possible unless the travel time of 3H through the unsaturated zone is comparable to that of SF6. The ratio of integrals of the response function over the age range with tracer and the whole response function yields the ratio of water with tracer to total flow of water. That ratio is a tracer‐dependent function of time. Transport modelling of SF6 tracer done with MT3D code yielded initially large discrepancies between calculated and measured tracer concentrations. Some discrepancies remained even after calibration of the transport model with SF6. Simulation of tritium contents with a calibrated transport model yielded reasonable agreement with measured contents in some wells and indicated a need for further investigations, particularly in the eastern part of the aquifer. The existence of distinct hydrochemical zones is consistent with the tracer data; young waters with measurable 3H and SF6 contents are aerobic and of HCO3 Ca or HCO3 SO4 Ca types. Slightly elevated Na and Cl contents, as well as the highest concentrations of SO4 and NO3 within this zone are due to anthropogenic influences. Anaerobic conditions prevail in the far field, under the confining cover, where pre‐bomb era Holocene waters dominate. In that zone, dissolved oxygen, NO3 and U contents are reduced, and Fe, Mn and NH4 contents increase. In the third zone, early Holocene and glacial waters occur. They are of HCO3 Ca Na or HCO3 Na types, with TDS values higher than 1 g l−1 and Na content higher than 200 mg l−1, due to either small admixtures of ascending or diffusing older water or freshening of marine sediments, a process that is probably occurring till the present time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Calculation of ground water ages--a comparative analysis   总被引:1,自引:0,他引:1  
Castro MC  Goblet P 《Ground water》2005,43(3):368-380
Ground water age is a fundamental, yet complex, concept in ground water hydrology. Discrepancies between results obtained through different modeling approaches for ground water age calculation have been reported, in particular, between ground water ages modeled by advection and direct simulation of ground water ages (e.g., age-mass approach), which includes effects of advection and dispersion. Here, through a series of two-dimensional (2D) simulations, the impact of water mixing through advection and dispersion on modeled 14C and directly simulated ground water ages is assessed. Impact of dispersion on modeled ages is systematically stronger in areas where water velocities are smaller and far more pronounced on 14C ages. This effect is also observed in one-dimensional models. 2D simulations show that longitudinal dispersion generally acts as a "source" of 14C, while vertical dispersion acts as a "sink," leading to apparent younger or older modeled 14C ages as compared to advective and directly simulated ground water ages. The presence of permeable and impermeable faults provides an equally important source for discrepancies, leading to major differences in modeled ages among the three methods considered. Overall, our results show that a 14C modeling approach using a solute transport model for calculating ground water age appears to be more reliable in ground water systems without faults and where water velocities are relatively high than in systems that are relatively more heterogeneous and those where faults are present. Among the three modeling approaches considered here, direct simulation of ground water age seems to yield the most consistent results in complex, heterogeneous ground water flow systems, giving a vertical age structure consistent with ages expected from consideration of the flow system.  相似文献   

10.
In this paper, we report cosmic-ray exposure ages (3He, 21Ne, 38Ar) and gas retention ages (4He, 40Ar) of two Antarctic meteorites, and the Guangmingshan and Zhuanghe ordinary chondrites. The Antarctic meteorites (GRV98002 and GRV98004) were collected on …  相似文献   

11.
Preservation of extraterrestrial 3He in 480-Ma-old marine limestones.   总被引:3,自引:0,他引:3  
We have measured the helium abundance and isotopic composition of a suite of Lower Ordovician marine limestones and associated fossil meteorites from Kinnekulle, Sweden. Limestone 3He/4He ratios as high as 11.5 times the atmospheric value in fused samples and up to 23 times atmospheric in a single step-heat fraction indicate the presence of extraterrestrial helium, and demonstrate that at least a fraction of the extraterrestrial 3He carried by interplanetary dust particles must be retained against diffusive and diagenetic losses for up to 480 Ma. The carrier phase has not been identified but is not magnetic. Extrapolation of high-temperature 3He diffusivities in these sediments is consistent with strong retention of extraterrestrial 3He under ambient Earth-surface conditions. Combination of the observed helium concentrations with sedimentation rates estimated from conodont biostratigraphy suggest that the flux of extraterrestrial 3He in the Early Ordovician was about 0.5 x 10(-12) cm3 STP cm-2 ka-1, ignoring potential post-deposition helium loss. This value is indistinguishable from the average 3He flux estimated for the Cenozoic Era. In contrast, previous studies of fossil meteorites, Ir abundances, and Os isotopic ratios in the limestone suggest that the total accretion rate of extraterrestrial material during the studied interval was at least an order of magnitude higher than the Cenozoic average. This disparity may reflect significant post-depositional loss of 3He from IDPs within these old limestones; if so, the match between the Ordovician flux and the Cenozoic average would be fortuitous. Alternatively, the size distribution of infalling objects during the Early Ordovician may have been enriched only in extraterrestrial material too large to retain 3He during atmospheric entry heating (> approximately 30 micrometers). The fossil meteorites themselves also preserve extraterrestrial helium. Meteorite 3He concentrations of 2 to 9 x 10(-12) cm3 STP g-1 are several orders of magnitude lower than found in most modern meteorites, suggesting very substantial helium loss (probably >99.9%) from these chemically altered objects. The Meteorites carry 3He concentrations only a factor of a few higher than the host limestones. The meteorites themselves cannot be the source of the extraterrestrial 3He observed in the limestones.  相似文献   

12.
Ground water discharge and nitrate flux to the Gulf of Mexico   总被引:3,自引:0,他引:3  
Ground water samples (37 to 186 m depth) from Baldwin County, Alabama, are used to define the hydrogeology of Gulf coastal aquifers and calculate the subsurface discharge of nutrients to the Gulf of Mexico. The ground water flow and nitrate flux have been determined by linking ground water concentrations to 3H/3He and 4He age dates. The middle aquifer (A2) is an active flow system characterized by postnuclear tritium levels, moderate vertical velocities, and high nitrate concentrations. Ground water discharge could be an unaccounted source for nutrients in the coastal oceans. The aquifers annually discharge 1.1 +/- 0.01 x 10(8) moles of nitrate to the Gulf of Mexico, or 50% and 0.8% of the annual contributions from the Mobile-Alabama River System and the Mississippi River System, respectively. In southern Baldwin County, south of Loxley, increasing reliance on ground water in the deeper A3 aquifer requires accurate estimates of safe ground water withdrawal. This aquifer, partially confined by Pliocene clay above and Pensacola Clay below, is tritium dead and contains elevated 4He concentrations with no nitrate and estimated ground water ages from 100 to 7000 years. The isotopic composition and concentration of natural gas diffusing from the Pensacola Clay into the A3 aquifer aids in defining the deep ground water discharge. The highest 4He and CH4 concentrations are found only in the deepest sample (Gulf State Park), indicating that ground water flow into the Gulf of Mexico suppresses the natural gas plume. Using the shape of the CH4-He plume and the accumulation of 4He rate (2.2 +/- 0.8 microcc/kg/1000 years), we estimate the natural submarine discharge and the replenishment rate for the A3 aquifer.  相似文献   

13.
Bias of Apparent Tracer Ages in Heterogeneous Environments   总被引:2,自引:0,他引:2  
The interpretation of apparent ages often assumes that a water sample is composed of a single age. In heterogeneous aquifers, apparent ages estimated with environmental tracer methods do not reflect mean water ages because of the mixing of waters from many flow paths with different ages. This is due to nonlinear variations in atmospheric concentrations of the tracer with time resulting in biases of mixed concentrations used to determine apparent ages. The bias of these methods is rarely reported and has not been systematically evaluated in heterogeneous settings. We simulate residence time distributions (RTDs) and environmental tracers CFCs, SF6, 85Kr, and 39Ar in synthetic heterogeneous confined aquifers and compare apparent ages to mean ages. Heterogeneity was simulated as both K‐field variance (σ2) and structure. We demonstrate that an increase in heterogeneity (increase in σ2 or structure) results in an increase in the width of the RTD. In low heterogeneity cases, widths were generally on the order of 10 years and biases generally less than 10%. In high heterogeneity cases, widths can reach 100 s of years and biases can reach up to 100%. In cases where the temporal variations of atmospheric concentration of individual tracers vary, different patterns of bias are observed for the same mean age. We show that CFC‐12 and CFC‐113 ages may be used to correct for the mean age if analytical errors are small.  相似文献   

14.
Reagents that enhance the aqueous solubility of non-aqueous phase organic liquid (NAPL) contaminants are under investigation for use in enhanced subsurface remediation technologies. Cyclodextrin, a glucose-based molecule, is such a reagent. In this paper, laboratory experiments and numerical model simulations are used to evaluate and understand the potential remediation performance of cyclodextrin. Physical properties of cyclodextrin solutions such as density, viscosity, and NAPL-aqueous inter-facial tension are measured. Our analysis indicates that no serious obstacles exist related to fluid properties that would prevent the use of cyclodextrin solutions for subsurface NAPL remediation. Cyclodextrin-enhanced solubilization for a large suite of typical ground water contaminants is measured in the laboratory, and the results are related to the physicochemical properties of the organic compounds. The most-hydrophobic contaminants experience a larger relative solubility enhancement than the less-hydrophobic contaminants but have lower aqueous-phase apparent solubilities. Numerical model simulations of enhanced-solubilization flushing of NAPL-contaminated soil demonstrate that the more-hydrophilic compounds exhibit the greatest mass-removal rates due to their greater apparent solubilities, and thus are initially more effectively removed from soil by enhanced-solubilization-flushing reagents. However, the relatively more hydrophobic contaminants exhibit a greater improvement in contaminant mass-removal (compared with water flushing) than that exhibited for the relatively hydrophilic contaminants.  相似文献   

15.
Variations in the isotopic composition of water were used to define the mechanism of recharge of the Assopos riverplain and the Kalamos Attikis coastal brackish karst springs. The plain is mainly recharged by local rain water, while the karst springs are fed by the Parnis mountain system, the mean recharge altitude being estimated in the order of 870 m. The apparent velocity and the underground pathway of the water feeding the springs were deduced and the most convenient sites for the drilling of production wells for recovery of the spring water before salinization were sited. As a result, 73,000 m3 of water are now pumped per day and used as additional potable water for the Athens area, comprizing about one-sixth of the mean daily consumption.  相似文献   

16.
Environmental dating tracers (3H, 3He, 4He, CFC-12, CFC-11, and SF6) and the natural spring response (hydrochemistry, water temperature, and hydrodynamics) were jointly used to assess mixing processes and to characterize groundwater flow in a relatively small carbonate aquifer with complex geology in southern Spain. Results evidence a marked karst behaviour of some temporary outlets, with sharp and rapid responses to precipitation events, while some perennial springs show buffer and delayed variations with respect to recharge periods. The general geochemical evolution shows a pattern, from higher to lower altitudes, in which mineralization and the Mg/Ca ratio rise, evidencing longer water–rock interaction. The large SF6 concentrations in groundwater suggest terrigenic production, whereas CFC-11 values are affected by sorption or degradation. The groundwater age in the perennial springs—as deduced from CFC-12 and 3H/3He—points to mean residence times of several decades, although the large amount of radiogenic 4He in samples indicate a contribution of old groundwater (free of 3H and CFC-12). Lumped parameter models and shape-free models were created based on 3H, tritiogenic 3He, CFC-12, and radiogenic 4He data in order to interpret the age distribution of the samples. Results evidence the existence of two mixing components, with an old fraction ranging between 160 and 220 years in age. The correlation of physicochemical parameters with some dating parameters, derived from the mixing models, serves to explain the hydrogeochemical processes occurring within the system. Altogether, long residence times are shown to be possible in small alpine systems with a clearly karst behaviour if the geological setting features highly tectonized media including units with diverse hydrogeological characteristics. These findings highlight the importance of applying different approaches, including groundwater dating techniques, when studying such groundwater flow regimes.  相似文献   

17.
Emerging groundwater contaminants such as per- and polyfluoroalkyl substances (PFAS) may impact surface-water quality and groundwater-dependent ecosystems of gaining streams. Although complex near-surface hydrogeology of stream corridors challenges sampling efforts, recent advances in heat tracing of discharge zones enable efficient and informed data collection. For this study, we used a combination of streambed temperature push-probe and thermal infrared methods to guide a discharge-zone-oriented sample collection along approximately 6 km of a coastal trout stream on Cape Cod, MA. Eight surface-water locations and discharging groundwater from 24 streambed and bank seepages were analysed for dissolved oxygen (DO), specific conductance, stable water isotopes, and a range of PFAS compounds, which are contaminants of emerging concern in aquatic environments. The results indicate a complex system of groundwater discharge source flowpaths, where the sum of concentrations of six PFAS compounds (corresponding to the U.S. Environmental Protection Agency third Unregulated Contaminant Monitoring Rule “UCMR 3”) showed a median concentration of 52 ± 331 (SD) ng/L with two higher outliers and three discharges with PFAS concentrations below the quantification limit. Higher PFAS concentration was related (− 0.66 Spearman rank, p < .001) to discharging groundwater that showed an evaporative signature (deuterium excess), indicating flow through at least one upgradient kettle lake. Therefore, more regional groundwater flowpaths originating from outside the local river corridor tended to show higher PFAS concentrations as evaluated at their respective discharge zones. Conversely, PFAS concentrations were typically low at discharges that did not indicate evaporation and were adjacent to steep hillslopes and, therefore, were classified as locally recharged groundwater. Previous research at this stream found that the native brook trout spawn at discharge points of groundwater recharged on local hillslopes, likely in response to generally higher levels of DO. Our study shows that by targeting high oxygen discharges the trout may thereby be avoiding emerging contaminants such as PFAS in groundwater recharged farther from the stream.  相似文献   

18.
Cosmogenic 21Ne was utilised to determine exposure ages of young subaerial basaltic lava flows from the Newer Volcanic Province, western Victoria, Australia. The ages (36–53 ka) determined from co-existing cosmogenic 21Ne and 3He in olivines separated from basalts are consistent within analytical uncertainties with ages previously determined by cosmogenic 36Cl exposure dating. This paper illustrates the potential of cosmogenic neon exposure ages in studying the eruption, surface morphology, and erosion history of young volcanic rocks, which are difficult to date using other conventional methods, such as K-Ar or 40Ar/39Ar dating. The present study demonstrates that combined cosmogenic 3He and 21Ne dating, specifically measured cosmogenic 3He/21Ne ratios, on the same samples, is powerful for evaluating the validity of calculated cosmogenic 3He and 21Ne surface exposure ages.  相似文献   

19.
Resetting of sediments mobilised by the LGM ice-sheet in southern Norway   总被引:3,自引:0,他引:3  
Former geological field investigations in the Rondane area, east-central southern Norway, have proposed that the maximum Fennoscandian ice-sheet coverage occurred during the Late Weichselian Glacial Maximum (LGM, ca. 20 ka) and that subsequent glaciofluvial sediments were first deposited in the early Holocene (after 10 ka). However, recent field investigations with ages from three internally consistent quartz optically stimulated luminescence (OSL) age series show an apparent deglaciation of northern Rondane in the period 20.0–13.8 ka. We examine here the possibility that these ages are too old because the sediment was not completely zeroed prior to deposition. Our investigations of incomplete bleaching use modern analogues, small aliquots, and single grains of quartz. First, the symmetric shape of small aliquot equivalent dose distributions suggests that the sediment was probably well bleached at deposition. This is supported by 5 modern analogue equivalent doses (De) of 0.6 Gy, 1.5% of the typical De from the deglaciation sediments. Finally, from single grain studies on three samples, we conclude that there is no evidence for poor bleaching in these samples; thus the weighted mean gives the best estimates of De, and these are completely consistent with both large and small aliquot estimates for these samples. These comparisons between large aliquots, modern analogues, small aliquots and single-grain analyses help to validate the OSL ages and confirm the complete resetting of these sediments prior to deposition.  相似文献   

20.
Berlin relies on induced bank filtration from a broad‐scale, lake‐type surface water system. Because the surface water contains treated sewage, wastewater residues are present in surface water and groundwater. Multiple environmental tracers, including tritium and helium isotopes (3H, 3He, 4He), stable isotopes (δ18O and δ2H) and a number of persistent sewage indicators, such as chloride, boron and a selection of pharmaceutical residues (phenazone‐type analgesics and their metabolites, carbamazepine and anthropogenic gadolinium, Gdexcess), were used to estimate travel times from the surface water to individual production and observation wells at two sites. The study revealed a strong vertical age stratification throughout the upper aquifer, with travel times varying from a few months to several decades in greater depth. Whereas the shallow bank filtrate is characterized by the reflection of the time‐variant tracer input concentrations and young 3H/3He ages, the deeper, older bank filtrate displays no tracer seasonality, 3H/3He ages of a few years to decades and strongly deviating concentrations of several pharmaceutical residues, reflecting concentrations of the source surface water over time. The phenazone‐type pharmaceuticals persist in the aquatic environments for decades. Bank filtration in Berlin is only possible at the sandy lakeshores. In greater water depth, impermeable lacustrine sapropels inhibit infiltration. The young bank filtrate originates from the nearest shore, whereas the older bank filtrate infiltrates at more distant shores. This paper illustrates the importance of using multiple tracer methods, capable of resolving a broad range of residence times, to gain a comprehensive understanding of time‐scales and infiltration characteristics in a bank filtration system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号