首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
太阳微波爆发中精细结构的统计研究   总被引:1,自引:0,他引:1  
本总结了北京天台1991年的2840MHz波段微波爆发中精细结构(FS)事件的观测。从FS的时间标度、强度、共生的微波爆发的峰值流量、FS发生在微波爆发的相位和FS与H。耀斑的关系等关系作了统计分子。发现约67%以上的FS其持续时间为几十毫秒到几百毫秒,85%以上的FS幅度小于200sfu,讨论了FS的时标、强度及22周太阳峰年期与21周FS出现率的差别。  相似文献   

2.
本文介绍了北京师范大学天文系,在2cm波段上观测到的太阳射电精细结构(FS).这些FS都是叠加在微波爆发上的.其中重点对1990年5月23日与AR6063活动区成协的一个47GB型微波大爆发上叠加的FS的形态特征进行了分析.计算了几个有关的参数,并对结果进行了简单的讨论.  相似文献   

3.
本工作用云南天文台1978年以来在9375MHz、3653MHz和2902MHz三个波段的微波爆发资料研究了伴随质子事件的微波爆发特征。主要结果如下: (1)在伴随质子事件的微波爆发各参数中,以峰值流量密度、能量密度等强度参数与质子流量相关最好; (2)在三个波段中,以2902MHz的强度参数与质子流量相关最好; (3)伴随质子事件的微波爆发相对增量随频率的分布呈“反U型谱”; (4)伴随质子事件的微波爆发型别,90%左右是复杂型大爆发和爆发系列。 以上特征用于质子事件警报效果较好。  相似文献   

4.
详细介绍了北京天文台2.6-3.8GHz太阳射电频谱仪在1998年4月15日观测到的一群微波Ⅲ型爆发。它们具有宽频带(>100MHz)、短时标(<100ms)、高偏振(100%)、短周期脉动(百毫秒)、内向快速频率漂移(高于1GHz/s)等显著特征。讨论了它的观测特征、时间轮廓和脉动现象,认为该群微波Ⅲ型爆发起源于等离子体基波辐射,阐述了在高频范围Ⅲ型爆发起源于等离子体基波辐射的可能性。  相似文献   

5.
对国家天文台5.2~7.6GHz频谱仪在23周太阳活动峰年期间(1999.8~2003.10)记录到的Ⅲ型爆发,与日冕物质抛射(CME)、Ha耀斑及相关事件作了统计分析。发现微波Ⅲ型爆发与CME的关系没有Ⅱ型射电爆发与CME的关系密切;与CME对应的Ha耀斑91%的都是渐变耀斑,且90%的渐变耀斑发生在CME之前,平均在前29分钟,仅有10%的耀斑发生在CME之后,平均在后4分钟;从这些统计特征出发,讨论了它们的辐射机制。  相似文献   

6.
本文考察了1967—1972年期间46个较大的0级以上的质子事件与所对应的8800MHz的太阳微波爆发之间的统计关系。 研究表明,将射电爆发按总持续时间T进行分类后,可以在不同的持续时间范围内分别找到同太阳质子流强度紧密相关的射电爆发参数(相关系数为0.83—0.91)。应用这些爆发参数得出的警报方案,预报质子流强度的误差范围为半级或一级(S—S分级法)时,报准率可达70%-94%,虚报率为52%。 此外,统计的结果还表明,Croom提出的平均持续时间T_M并不和质子流强度N_p相关,至少在此波长上不能用来预报质子流强度。  相似文献   

7.
1989年8月12日至19日,AR5629活动区产生了一系列的射电爆发。以8月15日0300.0UT发生在日面西边缘(S20,W81)的微波爆发为最大。该微波事件有X1.0/SF的太阳X射线耀斑相伴随,并产生了射电Ⅳ型大爆发,引起了一系列的地球物理效应。然而,这次射电大爆发并没有毫秒级尖峰辐射相伴随。本文分析这次微波事  相似文献   

8.
周树荣 《天文学报》1999,40(2):149-155
统计分析了太阳质子事件与微波爆发和软X射线(SXR)耀斑间的关系.结果表明:质子事件的峰值流量与微波爆发和SXR耀斑的峰值流量、能通量间呈正的对数线性相关,相关系数0.7—0.8.根据这一统计结果和观测的微波爆发、SXR耀斑的有关物理量,可以估算伴随的质子事件峰值流量.太阳质子辐射、SXR耀斑和微波爆发三者间的共生关系,可以用磁环中耀斑产生的磁流体动力学过程来解释.大约33%的质子事件没有对应的Ⅱ型爆发,这表明高能质子的加速有随机MHD湍流加速(有Ⅱ型暴)和低频快磁声波湍动加速(无Ⅱ型暴,但有γ射线耀斑)2种不同的加速机制  相似文献   

9.
本文介绍用“三波段太阳射电高时间分辨率同步观测系统”所观测到的1988年12月16日三波段(1420MHz、2840MHz、4000MHz)太阳射电大爆发中毫秒级精细结构的观测特征,指出太阳射电快速活动在射电爆发的不同阶段具有不同的特征,首先在爆发的上升沿出现2840MHz的毫秒尖峰辐射群,继而在1420MHz上出现毫秒级尖峰辐射群,并且还在以后的几个爆发次峰上陆续出现,在长达两小时的大爆发过程中,在4000MHz上始终未产生毫秒级尖峰辐射,这也反应了射电尖峰辐射现象存在着一定的带宽。特别引起注意的是毫秒级尖峰辐射群均出现在射电爆发的峰值附近,在其它时间的记录中尚未发现毫秒尖峰辐射。 三波段的秒级射电爆发曲线如图1所示。毫秒级精细结构如图2所示。由图2可见,单个尖峰辐射的持续随频率的减小而增加,2840MHz多为10—20ms,1420MHz多为30—170ms;所产生的尖峰辐射群强度不大,而且很少有孤立的尖峰;2840MHz尖峰辐射的强度一般为450—900sfu,1420MHz一般为500—1770sfu(1sfu=10~(-22)WM~(-2)Hz~(-1));还特别引起注意的是在2840MHz上当所出现的尖峰辐射群结束时,往往出现持续时间为100ms的流量下降现象,(此种现象在以往的观测中未曾见过),详见图2b和2c;关于事件尖峰辐射的丰度,仅对几个尖峰辐射群作了统计如下: 在1420M  相似文献   

10.
本文介绍了北京天文台观测到的太阳射电10厘米波段的毫秒级快速精细结构(FFS)中一类有长持续时间的尖峰(我们称毫秒时标记录上陡升陡降图形为“尖峰”,称秒级时标的记录上的陡升陡降图形为“脉冲”)群事件。这一类微波毫秒尖峰群(MMS)事件具有一系列显著的特点: 1)它在秒级时间常数的慢速记录上常常对应一8S型(持续时间小于1分钟的脉冲)的爆发。因而利用脉冲的频谱特性,对这一类微波爆发中的毫秒精细结构的特征及可能的机制进行探讨,以弥补目前只能在一个波段上观测FFS事件的缺陷。 2)这一类脉冲爆发具有从低频向高频的频漂(正的频漂),而且频漂的速率随频率带增加而增加。 3)脉冲的幅度在波长8—10厘米间受到强烈的衰减。 4)脉冲群中的每一脉冲的极大频率及起始频率从高频逐渐移向低频,意昧着激发源逐渐上升。估计上升速度约为50公里/秒。 5)这类脉冲常常出现在有δ型磁结构、最大磁场强度大于2500高斯的复杂活动区中,可能有不同级别的耀斑与之对应。 6)这类脉冲与硬X线爆发事件、分米波段快速频漂事件及“BLIPS”事件见文[7]有密切的关系。 7)这一类微波快速尖峰群事件可以解释为来自耀斑-爆发事件中形成的电子加速中心的快速非热电子流向下运动穿入一耀斑环激起的电子迴旋脉泽辐射。  相似文献   

11.
Fletcher  L.  Hudson  H.S. 《Solar physics》2002,210(1-2):307-321
In a sample of strong RHESSI M-class flares we have made a study of the relationship between the `hardness' of the HXR spectrum and the intensity in the 30–50 keV energy range. In all events we find clear evidence for a `soft–hard–soft' pattern of correlation between hardness and flux, on time scales as short as 10 s. We investigate whether or not this pattern is intrinsic to the acceleration mechanism. The RHESSI images in this energy range are dominated by footpoint brightenings, and we have searched for a correlation between footpoint separation velocity and spectral hardness, to be compared qualitatively with theoretical flare models. We find quite systematic footpoint motions, and also note that episodes in which footpoint separation varies rapidly often correspond with episodes of significant change in the flare spectral index, though not as the simplest flare models would predict. We report also on one of our events, on 14 March 2002, which exhibits highly sheared HXR footpoint ribbons extending over a scale of 100 arc sec. For this flare we find a correlation between footpoint motion and hard X-ray flux. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022479610710  相似文献   

12.
The 10.7 cm flux data, which are widely used as an index of solar activity, are actually spot measurements of the solar flux density at 10.7 cm wavelength, made three times each day, usually at 17:00, 20:00, and 23:00 UT. These values, or the 20:00 UT determination alone, are frequently used as the average flux for that day. Since each spot measurement takes about one hour to make, and the Sun's emissions at that wavelength can vary over time scales shorter than the intervals between the measurements, the data are unavoidably undersampled. Radio emissions from transient events, such as flares, are defined as contaminants of the flux, and largely-empirical procedures have evolved which are used to filter them from the data. The utility of theF 10.7 index over more than 40 years suggests that the consequences of the under-sampling and the use of largely-empirical data filters are not serious. However, as new applications of the flux data appear, and existing ones become more quantitative, we need to better understand the accuracy of data as estimates of the 10.7 cm flux index, and to know how much precision we can reasonably expect to attain. In this paper we describe part of a study aimed at estimating how good the spot measurements are as estimators of the ‘daily-average’ flux. By a combination of measurement and modelling, the contributions to the flux monitor output truly due to the Sun are separated from the non-solar signals. We then derive the daily average 10.7 cm flux values and compare them with the spot measurements. We find that in general, the spot measurements are usually within a percent or so of the daily-average fluxes.  相似文献   

13.
In the relativistic fireball model, the afterglow of a gamma-ray burst (GRB) is produced by synchrotron radiation of the electrons accelerated in the external shock that emerges as the relativistic flow moves. According to this model, the afterglow peaks on a time scale of ~10 s when observed in the soft gamma-ray band. The peak flux can be high enough to be detected by modern all-sky monitors. We investigate the emission from short (ΔT<1 s) GRBs on a time scale t≈10 s using BATSE/CGRO data. A significant flux is recorded for ~20% of the events. In most cases, the observed persistent emission can be explained in terms of the model as an early burst afterglow. No early afterglows of most short GRBs are observed. The model parameters for these bursts are constrained.  相似文献   

14.
We made simultaneous single-dish and VLBI observations of a gamma-ray narrow-line Seyfert 1 (NLS1) galaxy 1H 0323+342. We found significant flux variation at 8 GHz on a time scale of one month. The total flux density varied by 5.5% in 32 days, corresponding to a variability brightness temperature of 7.0 × 1011 K. We also obtained brightness temperatures of greater than 5.2 × 1010 K from the VLBI images. These high brightness temperatures suggest that the source has nonthermal processes in the central engine. The source structure could be modelled by two elliptical Gaussian components on the parsec scales. The flux of the central component decreases in the same way as the total flux density, showing that the short-term variability is mainly associated with this component.  相似文献   

15.
We present the infrasonic observations of three large bolides that were observed at numerous International Monitoring System (IMS) infrasound arrays on a global scale. First, a simple procedure for the global association of infrasound detections from large infrasound events is outlined. Infrasound signals are associated with large events based on arrival time, backazimuth and uniqueness at a given IMS array. Next, we apply the algorithm to three bolides and investigate some of the factors affecting the detectability of infrasound from large events. Our findings suggest that site-noise effects significantly degrade the capability of the IMS infrasound network, suggesting that more effort is required to reduce ambient site noise. These results have implications for the use of infrasound measurements (in particular those from IMS stations) as a tool for evaluating the global flux of near-Earth objects.  相似文献   

16.
Fine structure in solar microwave bursts   总被引:3,自引:0,他引:3  
We have designed and constructed a new multi-channel radio spectrograph for the study of short-lived structures in solar microwave bursts. It measured the integrated flux over the whole solar disc in two circular polarizations at 36 frequencies between 4 and 8 GHz, with a time constant of 0.5 ms. We have analyzed all 119 recorded bursts observed in 1981 and 1983. We focused our attention on events with a lifetime of less than 1 s. Fine structure occurs in about 30% of the observed bursts, and can be as rich in detail as in bursts observed at lower frequencies. We found at least four different classes of events. In one event neither bandwidth nor time resolution of the receiver appear to be sufficient to resolve the fine structure. The bulk of the drifts is found to be towards higher frequencies. Periodic flux variations were found in two cases.  相似文献   

17.
A summary of major solar proton events   总被引:9,自引:0,他引:9  
Solar proton events have been routinely detected by satellites since the 20th solar cycle; however, before that time only very major proton events were detected at the Earth. Even though the detection thresholds differed between the 19th and more recent cycles, more than 200 solar proton events with a flux of over 10 particles (cm2 s ster)–1 above 10 MeV have been recorded at the Earth in the last three solar cycles. At least 15% of these events had protons with energies greater than 450 MeV detected at the Earth. Other than an increase in solar proton event occurrence with increasing solar cycle, no recognizable pattern could be identified between the occurrence of solar proton events and the solar cycle. The knowledge we have gained from the data acquired over the past 40 years illustrates the difficulty in extrapolating back in time to infer the number and intensity of major solar proton events at the Earth.The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.  相似文献   

18.
Das  T.K.  Sarkar  H. 《Solar physics》2002,207(2):381-388
The relationship between metric type II radio bursts and soft X-ray (SXR) flares is studied. Type II bursts are highly associated with SXR flares. The duration and drift rate of type II bursts are found to depend on the duration, asymmetry in duration (ratio of rise time to duration), as well as on the peak flux of SXR bursts. Important results obtained are: (i) the durations of type II bursts are linearly correlated with the durations of associated SXR bursts in case of long-lived events (duration >40 min), whereas in short-lived flares such a correlation is not found, (ii) the durations of type II bursts do not depend upon the SXR peak flux, (iii) more durable type II radio bursts are correlated with more symmetric SXR bursts, (iv) average drift rates of type II bursts are larger in the events associated with more powerful and more symmetric SXR bursts.  相似文献   

19.
The results of 154 daily observations of 33 sources in the declination interval 70°–84.° 5 (J 2000), made in 2009, are reported. Four objects are found to exhibit variations with typical time scales ranging from 8 to 35 days and modulation indices 2.1–5.6%. The spectra of the variable components are obtained. The same sources were observed again after six months, in 2010, for a duration of up to 55 days. The 11.1 GHz flux densities of one third of the sources varied by more than 10% between the two data sets.  相似文献   

20.
Cratering rates on the Galilean satellites   总被引:1,自引:0,他引:1  
Zahnle K  Dones L  Levison HF 《Icarus》1998,136(2):202-222
We exploit recent theoretical advances toward the origin and orbital evolution of comets and asteroids to obtain revised estimates for cratering rates in the jovian system. We find that most, probably more than 90%, of the craters on the Galilean satellites are caused by the impact of Jupiter-family comets (JFCs). These are comets with short periods, in generally low-inclination orbits, whose dynamics are dominated by Jupiter. Nearly isotropic comets (long period and Halley-type) contribute at the 1-10% level. Trojan asteroids might also be important at the 1-10% level; if they are important, they would be especially important for smaller craters. Main belt asteroids are currently unimportant, as each 20-km crater made on Ganymede implies the disruption of a 200-km diameter parental asteroid, a destruction rate far beyond the resources of today's asteroid belt. Twenty-kilometer diameter craters are made by kilometer-size impactors; such events occur on a Galilean satellite about once in a million years. The paucity of 20-km craters on Europa indicates that its surface is of order 10 Ma. Lightly cratered surfaces on Ganymede are nominally of order 0.5-1.0 Ga. The uncertainty in these estimates is about a factor of five. Callisto is old, probably more than 4 Ga. It is too heavily cratered to be accounted for by the current flux of JFCs. The lack of pronounced apex-antapex asymmetries on Ganymede may be compatible with crater equilibrium, but it is more easily understood as evidence for nonsynchronous rotation of an icy carapace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号