首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collisional granitoid magmatism caused by the Early Neoproterozoic orogeny in the west of the Siberian craton is considered. New data on the petrogeochemical composition, U-Pb (SHRIMP II), Ar-Ar, and Sm-Nd isotopic ages of the Middle Tyrada granitoid massif in the northwestern Yenisei Ridge are presented. Plagiogranites, granodiorites, and quartz diorites of the massif are of calcareous and calc-alkalic composition. The elevated alumina contents and presence of accessory garnet permit them to be assigned to S-type granitoids. Their spidergrams show Rb, Ba, and Th enrichment, minimum Nb, P, and Ti contents, and no Sr depletion. The granitoids formed through the melting of plagioclase-enriched graywacke source, obviously Paleoproterozoic metaterrigenous rocks of the Garevka Formation and Teya Group (TNd(DM) = 2.0-2.5 Ga), judging from the isotope composition of the granitoids (TNd(DM-2st) = 2200 Ma and 8Nd(T) = − 6.0) and the presence of ancient zircon cores (1.80-1.85 Ga). Formation of granitoids took place in the final epoch of the Grenville collision events in the late Early Neoproterozoic (U-Pb zircon age is 857.0 ± 9.5 Ma). In the Late Neoproterozoic, the granitoids underwent tectonothermal reworking caused by Vendian accretion and collision events on the southwestern margin of the Siberian craton, which explain the younger K-Ar biotite age, 615.5 ± 6.3 Ma.  相似文献   

2.
3.
First U-Pb zircon isotopic dates were obtained for rocks from the Devonian volcanic belt in Kazakhstan. The granodiorites of the Zhabden Massif (Karamendinskii Complex) were dated at 391 ± 1 Ma. The Sm-Nd isotopic system of a whole-rock granodiorite sample (?Nd = 2.5) suggests a high percentage of mantle material in the initial granite melt, which is in good agreement with known data on granitoids in neighboring territories in Kazakhstan. With regard for the isotopic dates obtained for the granodiorites, the material of their source was separated from the mantle at 946 Ma.  相似文献   

4.
5.
6.
The intrusive rocks associated with the large Nezhdaninka gold deposit (Au > 470 t) hosted in the Permian carbonaceous terrigenous sequence have been dated on zircon and rock-forming minerals with precision U-Pb (ID-TIMS) and Rb-Sr methods. The lamprophyre of the dike complex that occurs in the ore field and spatially is related to gold mineralization has concordant U-Pb zircon age (121 ± 1 Ma) and the same isochron Rb-Sr age (121.0 ± 2.8 Ma). The concordant U-Pb zircon age of granodiorite that dominates in the Kurum pluton is 94 ± 1 Ma, whereas the Rb-Sr isochron age of various intrusive rocks from this pluton is 1–4 Ma younger. This difference is caused by long-term cooling of the Kurum pluton and later closure of Rb-Sr isotopic system of biotite (300–350°C) and other rock-forming minerals as compared with U-Pb isotopic system of zircon (~ 900°C). The Rb-Sr age of quartz diorite from the Gel’dy group of stocks (92.6 ± 0.8 Ma) coincides within uncertainty limits with the age of the Kurum pluton. Thus, the rocks pertaining to two epochs of magmatic activity, which developed in the South Verkhoyansk Foldbelt and divided by a time span of 25–28 Ma, are documented in the Nezhdaninka ore field. Taking into account that the age of gold mineralization is no less than 120 Ma, the data obtained allow us to specify the previously proposed formation model of the Nezhdaninka deposit. These data give grounds to rule out the Late Cretaceous Kurum pluton and the Gel’dy group of stocks from constituents of the ore-magmatic system, and to suggest that an Early Cretaceous deep-seated magma source existed beneath the deposit. Along with host terrigenous rocks, this magma source participated in the supply of matter to the hydrothermal system. The Nd, Sr, and Pb isotopic systematics of igneous rocks and ore mineralization in the Nezhdaninka ore field show that the Early and Late Cretaceous magma sources were formed in the Precambrian crust dated at ~1.8 Ga.  相似文献   

7.
O. M. Turkina 《Petrology》2010,18(2):158-176
Newly obtained U-Pb and Sm-Nd isotopic data on Early Precambrian metamorphic and granitoid complexes in the southwestern margin of the Siberian craton (Sharyzhalgai basement uplift) are synthe-sized in order to elucidate the crustal evolution starting at the Paleoarchean (∼3.6 Ga) to Late Paleoproterozoic (∼1.85 Ga), evaluate the lateral extent of the Paleo-Mesoarchean crust, and identify major stages in its growth and recycling. Two crustal growth stages were determined in the Onot and Bulun granite-greenstone terranes: at 3.6–3.3 and 2.8–2.9 Ga. The earliest recycling processes (at ∼3.4 and 3.2 Ga) involved partial melting, metamorphism, and migmatization and produced a stable continental crust. Crustal growth in the Mesoarchean (∼2.8–2.9 Ga) due to basaltoid magmatism was associated with the recycling of the Paleoarchean crust, which served as a source of felsic melts and of detrital material for terrigenous sediments. The Archean crust of the Irkut granulite-gneiss terrane was formed by two pulses of intermediate-felsic and basic volcanism at ∼3.6-3.4 and ∼2.7 Ga. In the terminal Archean (at ∼2.55 Ga), the preexisting crust was involved in metamorphic and magmatic processes. Traces of recycling of the Paleoproterozoic crust are identified in the isotopic parameters of the intermediate-felsic granulites. Two discrete stages in the influx of juvenile material are identified in the Paleoarchean: at ∼2.0 and 1.88–1.85 Ga, with the latter stage associated with the large-scale recycling of the Archean crust during the origin of granitoids.  相似文献   

8.
9.
Complex isotopic-geochemical (Sm-Nd,U-Pb) study of Salma eclogites   总被引:1,自引:0,他引:1  
Doklady Earth Sciences -  相似文献   

10.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

11.
12.
13.
Geological observations in combination with previously published and new isotopic data allowed us to reconstruct the history of geological events that eventually gave rise to the formation of the Berdyaush pluton situated on the western slope of the South Urals: (1) emplacement of gabbro into Lower Riphean sedimentary rocks (1410–1390 Ma); an enriched mantle source of gabbro arising in the Archean or Paleoproterozoic; (2) formation of granitic melt in the lower crust; Archean TTG association subsequently enriched in K and correlative elements as a result of interaction with enriched mantle-derived magmas and related fluids was a magma source; mixing of mantle and crustal magmas in the course of their synchronous ascent with formation of hybrid intrusive rocks; injections of mafic and hybrid melts into incompletely solidified granite; fragmentation of such injections with the formation of melanocratic nodules; emplacement of basic dikes into the cooled granite—all these events took place 1410–1360 Ma ago; (3) discrete episodes of partial melting of enriched mantle source with waning intensity; formation of minor volumes of melt, which solidified under auto- and paraautochthonous conditions as local domains highly enriched in incompatible elements (1360–1270 Ma); (4) partial melting of those domains resulting in the formation of minor nepheline syenite intrusions (915–800 Ma), containing relict zircon grains dated at >1270 Ma; (5) injections of mantle-derived alkaline melt contaminated with crustal granitic material as microsyenite and syenite porphyry dikes (700–500 Ma ?). Thus, the Berdyaush pluton is a projection of a local domain of mantle and crustal magma generation, which periodically resumed its activity over almost a billion years.  相似文献   

14.
15.
We report single grain U-Pb ion-microprobe as well as conventional bulk size fraction ages for zircons from 3 metasediment samples of the Moldanubian Complex, Bohemian Massif, one of the largest crystalline complexes of the Hercynian foldbelt in Europe. These are complemented by whole-rock Sm-Nd model ages. The metasediments are of upper amphibolite to granulite grade and come from the Bory Massif in Moravia, NW of Brno (sample AA-1) and from the Varied Group (AA-2) and Monotonous Group (AA-3) in the Ceske Budejovice region of SW Bohemia.Ion-microprobe data for detrital zircons yielded 207Pb/ 206Pb ages between ca. 1750 Ma and 2680 Ma and reflect chronologically heterogeneous source terrains. One grain in sample AA-1 of the Bory granulite massif may be as old as 2684±14 Ma, and this constitutes the oldest reported zircon age for the Hercynian belt of central Europe. The single grain data are much less discordant than previously published conventional U-Pb analyses from bulk zircon samples and suggest a significant early Proterozoic crust-formation event between 2 and 2.2 Ga ago. The size fraction data are compatible with the single grain ages and give a fairly precise definition of the Hercynian event between 347 and 367 Ma ago while their upper Concordia intercept ages between 1700 and 2050 Ma represent the mean of the respective grain populations and are probably geohronologically meaningless. The Nd whole-rock model ages between 1.7 and 3.0 Ga confirm mid-Proterozoic to Archaean source terrains for the dated metasediments.  相似文献   

16.
The Dongueni Mont nepheline syenite intrudes migmatitic paragneisses and siliciclastic metasediments of the Barue Complex, Mozambique. This study reports the whole-rock geochemical, U-Pb and Nd isotopic data of the nepheline syenite. The ferroan and alkalic geochemical characteristics are typical of alkaline rocks formed in a within-plate setting. The strong depletion in high field strength elements(HFSEs)(e.g. Ba, Nb, P,and Ti) and enrichment in large ion lithophile elements(LILEs)(e.g. Rb, Th, K, and Pb) are consistent with magmatism in a continental alkaline magmatic province associated with intracontinental rifting. Zircon U-Pb data yielded crystallization ages from 498 ± 19 to 562± 14 Ma,consistent with the Pan-African Orogeny and the inherited zircons yield an age of 1040 Ma, which supports the presence of a Mesoproterozoic crust. Theε_(Nd)(t) values from the nepheline syenite samples range from-15.1 to-16.1 and the T_(DM)values from 1.77 to 1.67 Ga, which indicate that the initial nepheline syenite magma formed from a tholeiitic or mantle source in a within-plate setting with crustal assimilation.  相似文献   

17.
Uranium-lead, Rb-Sr, and Sm-Nd isotopic analyses have been performed on the same whole-rock, mineral, and leachate fractions of the basaltic martian meteorite Zagami to better constrain the U-Pb isotopic systematics of martian materials. Although the Rb-Sr and Sm-Nd systems define concordant crystallization ages of 166 ± 6 Ma and 166 ± 12 Ma, respectively, the U-Pb isotopic system is disturbed. Nevertheless, an age of 156 ± 6 Ma is derived from the 238U-206Pb isotopic system from the purest mineral fractions (maskelynite and pyroxene). The concordance of these three ages suggest that the 238U-206Pb systematics of the purest Zagami mineral fractions have been minimally disturbed by alteration and impact processes, and can therefore be used to constrain the behavior of U and Pb in the Zagami source region. The μ value of the Zagami source region can be estimated, with some confidence from the 238U-206Pb isochron, to be 3.96 ± 0.02. Disturbance of the U-Pb isotopic systems means that this represents a minimum value. The μ value of the Zagami source is significantly lower than the μ values estimated for most basaltic magma sources from Earth and the Moon. This is surprising given the high initial 87Sr/86Sr ratio (0.721566 ± 82) and low initial εNd value (−7.23 ± 0.17) determined for Zagami that indicate that this sample is derived from one of the most highly fractionated reservoirs from any known planetary body. This suggests that Mars is characterized by a low bulk planet U/Pb ratio, a feature that is consistent with its relatively volatile-rich nature.The leachates contain terrestrial common Pb that was probably added to the meteorite during handling, curation, or sawing. The mineral fractions, particularly those with significant amounts of impact melt glass, contain a second contaminant. The presence of this contaminant results in Pb-Pb ages that are older than the crystallization age of Zagami, indicating that the contaminant is characterized by a high 207Pb/206Pb ratio. Such a contaminant could be produced by removal of single-stage Pb from a relatively high μ martian reservoir before ∼1.8 Ga, and therefore could be an ancient manifestation of hydrous alteration of martian surface material.  相似文献   

18.
Sm-Nd systematics for nine whole-rock samples of hornblende norites, pyroxenites and a lamprophyre from various parts of the Cortlandt Complex were analyzed. Six of these samples from the central and eastern parts of the complex give an isochron age of 430±34 (2) Ma with an Nd value of –2.9±0.5, and the other three samples from the western part, including the lamprophyre, define a similar age of 394±33 (2) Ma but with a distinctly different Nd value of –1.4±0.4. The two different initial 143Nd/144Nd ratios corresponding to these -values are interpreted to reflect continental crustal contamination of the lamprophyric parental liquid prior to final emplacement and crystal fractionation to produce the different rock types of the complex. The intrusion age of 430 Ma for the complex clearly post-dates the major metamorphic event of the Taconic orogeny. The Nd-isotopic data also suggest a relationship between the Cortlandt Complex and a belt of lamprophyric dike rocks to the west, known as the Beemerville trend, which cuts across the metamorphic trends of the Taconic (Ratcliffe 1981).  相似文献   

19.
Three meta-acidic rocks from the western Italian Alps, a magnesiochloritoid-bearing metapelite from the Monte Rosa massif, a coesite-pyrope-quartzite from the Dora Maira massif and the Monte Mucrone granite in the Sesia Zone, have been studied by U-Pb zircon, Rb-Sr on whole-rock, apatite and phengite and Sm-Nd wholerock methods. The mineral parageneses of the investigated rocks indicate high- to very-high-pressure and medium-to-high-temperature metamorphism. This combined isotopic study has enabled us to constrain the ages of magmatic and metamorphic events and also to compare the behaviour of U-Pb zircon systems in three intensely metamorphosed areas of the Pennine domain. The U-Pb zircon data have yielded a magmatic age for the Monte Mucrone granite at 286±2 Ma. This result confirms the occurence of late-Hercynian magmatism in the Sesia Zone, as in other Austro-Alpine units and in other areas of the European crystalline basement. In the Monte Rosa massif, a geologically meaningless lower intercept age of 192±2 Ma has been interpreted as an artefact due to a complex evolution of the U-Pb zircon system. The magmatic shape of the zircons implies a magmatic or volcano-sedimentary protolith for this rock, originally considered as a metasediment. The very-high-pressure metamorphism in the Dora Maira quartzite has produced an opening of the U-Pb zircon system at 121+12–29 Ma. The Rb-Sr data support the occurence of high-grade metamorphism during Cretaceous times. Phengites model ages are slightly younger than the U-Pb zircon lower intercept ages due to cooling phenomena or possible response of the phengites to a later deformation. The Nd model ages from the whole-rock samples, as well as the U-Pb upper intercept ages from zircons of all three investigated rocks, indicate the presence of Proterozoic crustal components inherited from the precursors of these meta-acidic rocks. The studied zircon populations and their U-Pb systems apparently showed open-system behaviour only when affected by extreme metamorphic conditions (700–750° C, > 28 kbar), whereas eclogite-facies conditions of 500–550° C and 14–16 kbar were not enough to disturb significantly the U-Pb zircon evolution. It is also probable that the sedimentary or magmatic origin of the protoliths of these meta-acidic rocks, which involved different characteristics such as grain-size and fluid phase concentration and composition, could be another important factor controlling the U-Pb zircon system behaviour during metamorphic events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号