首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Velocity and temperature derivatives were obtained at a height of 4 m in the atmospheric surface layer above land. With the assumption of local isotropy, these measurements are used to obtain some statistics of the turbulent energy and scalar dissipation fields. These statistics include the variances of the logarithms of the scalar and velocity dissipation fields and the correlation between these logarithms. When used in conjunction with the hypotheses for fluctuations in turbulent dissipation rates of Obukhov and Kolmogorov, the statistics suggest that the dependence of the flatness factor of temperature derivative on the turbulent Rynolds number R is not as large as that which had been previously reported in the literature. The experimental data indicate a R 0.5 dependence for the kurtosis of the temperature derivative and a R 0.15 variation for the strain rate-scalar dissipation correlation.  相似文献   

2.
This work studies the dissipation that affects the statistical behavior of a climate variable. The hypothesis tested is that the statistical dissipation of large-scale variables in a climate model is significantly influenced by the temporal variations of the models small scale variables. The test is made with the T21 ECHAM4 atmospheric GCM by varying models representation of small-scale variables in two different ways. First, the strength of the horizontal diffusion is modified. Secondly, white noise unrelated to the state of the large-scale variables is added to variables with the smallest scales (wave numbers equal to and smaller than 18). It is found that the statistical dissipations of large-scale variables (e.g., vorticity at wave numbers equal to and larger than six) depend on the intensity of small-scale fluctuations, no matter whether they are induced by modifying the horizontal diffusion or by adding noise. The stronger the small-scale fluctuations, the stronger are the dissipations of the large-scale variables. This result suggests that the simulation of low-frequency climate variations and the prediction of climate change responses depend on the model representation of small-scale climate components.  相似文献   

3.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

4.
In this paper, data obtained from a 164 m and a195 m meteorological tower in the northern suburb ofNanjing have been used to estimate and analyzetime-space distributions for velocity spectra andscales of multi-scaling turbulence during thepassages of two cold fronts. Results show that anon-precipitating weak cold front and aprecipitating cold front were clearly revealed bytheir wind field structures. The frontal passageinfluenced all meteorological variables over aperiod of 18–24 hours for the former, and a longerperiod of 44–56 hours for the latter. During these periods there occurred gust surges and eddymotions of various meso- and micro-scales with periodsof 3–4 hours and 1–20 minutes respectively. In the inertialsubrange Kolmogorov's -2/3 power law for thevelocity spectrum is partly distorted and theturbulence in the atmospheric boundary layer is not isotropic.  相似文献   

5.
Foliar dynamics in tropical southern Africa are examined using meteorological satellite observations (NOAA-AVHRR) collected from 1981–1990, processed as monthly Normalized Difference Vegetation Index (NDVI) images, and resampled to 7.6 km resolution. Time series of NDVI and raingauge data are presented and analyzed using a variety of statistics. The analysis of time series from individual locations revealed positive correlations between NDVI and rainfall at semiarid locations where rainfall tended to be highly variable; whereas the relationships between these variables was insignificant in more mesic sites where the climate tended to be more predictable. In addition, there appeared to be an annual rainfall threshold of approximately 600 mm beyond which relationships between rainfall and NDVI were insignificant at the monthly time scale. Relationships between rainfall and NDVI were stronger at annual time scale, which suggests that factors other than contemporaneous rainfall account for photosynthetic activity in any given growing season. Using a rainfall surface and NDVI imagery, a large area of early greening behavior is identified, which corresponded approximately to the distribution of mesic, plateau woodlands. These so-called, miombo woodlands may be especially vulnerable if the arrival of spring rainfall were to undergo a positive shift in phase.  相似文献   

6.
The treatment of the land surface can have a significant impact on the performance of atmospheric models, influencing the surface energy balance and near surface atmospheric variables. In numerical weather prediction models it is especially important to reproduce the observed diurnal cycle in screen-level temperature, which requires an accurate representation of the surface temperature, and therefore an accurate and computationally efficient representation of soil heat storage and transfer. We present a technique for analysing the accuracy of numerical soil temperature schemes, and a methodology for choosing the optimal layer thicknesses for schemes with a given number of layers. Furthermore, the analysis suggests that first generation land surface schemes, which typically used a layer-average surface temperature, may be more accurate in this respect than the latest land surface schemes, which tend to use a skin surface temperature boundary condition.The British Crowns right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.  相似文献   

7.
An analogy has been established between a plane mixing layer and the atmospheric flow near the top of a vegetation canopy. It is based on a common feature, a strong inflection in the mean velocity profile, responsible for hydrodynamical instabilities that set the pattern for the coherent eddies and determine the turbulence length scales. In an earlier study, this analogy was tested using a small data set from thirteen experiments, all in near-neutral conditions. It provided a good prediction of the streamwise spacing w of the dominant canopy eddies (evaluated from time series of vertical velocity) that appears to depend on a shear length scale Ls = U(h)/U'(h), where h is canopy height, U is mean velocity and U' the vertical gradient dU/dz. The present analysis utilizes an extensive data set of approximately 700 thirty-minute runs, from six experiments on two forest sites and a maize crop, with a large range of stability conditions. w was estimated for each run using the wavelet transform as an objective, automated detection method. First, the variations of w and Ls with atmospheric stability are discussed. Neutral and unstable values exhibit a large scatter whereas in stable conditions both variables decrease with increasing stability. It is subsequently found that w is directly related to Ls, in a way close to the neutral prediction w /h = 8.1Ls/h.The Strouhal number Str = Ls /w is then shown to vary with atmospheric stability, weakly in unstable conditions, more significantly in stable conditions. Altogether these results suggest that, to some extent, the plane mixing-layer analogy can be extended to non-neutral conditions. It is argued that the primary effect of atmospheric stability, at least in stable conditions, is to modify the shear length scale Ls through changes in U(h) and U'(h), which in turn determines the streamwise spacing of the active, coherent motions.  相似文献   

8.
Meteorological measurements taken at the Näsudden wind turbine site during slightly unstable conditions have been analyzed. The height of the convective boundary layer (CBL) was rather low, varying between 60 and 300 m. Turbulence statistics near the ground followed Monin-Obukhov similarity, whereas the remaining part of the boundary layer can be regarded as a near neutral upper layer. In 55% of the runs, horizontal roll vortices were found. Those were the most unstable runs, with -z i/L > 5. Spectra and co-spectra are used to identify the structures. Three roll indicators were identified: (i) a low frequency peak in the spectrum of the lateral component at low level; (ii) a corresponding increase in the vertical component at mid-CBL; (iii) a positive covariance {ovvw} together with positive wind shear in the lateral direction (V/z) in the CBL. By applying these indicators, it is possible to show that horizontal roll circulations are likely to be a common phenomenon over the Baltic during late summer and early winter.  相似文献   

9.
This paper describes the similarity between atmospheric fluctuations of carbon dioxide, water vapor and temperature using data which cover a wide range of instability (0.02 < < 10). The is the Monin-Obukhov stability parameter including the humidity effect.The spectral analysis shows that the coherency between fluctuations of carbon dioxide and water vapor or temperature is very close to unity, and the phase difference is basically out of phase for whole frequency ranges analyzed. The stability dependence of the normalized standard deviation of carbon dioxide is very similar to those of water vapor and temperature. The normalized standard deviation is about 2.5 under near neutral conditions, and it decreases with increasing instability following the -1/3; power law as (-)-1/3. The skewness factors of carbon dioxide, water vapor and temperature show a systematic departure with increasing instabilities for 0.02 < s- < 1, and level off at high instabilities for 1 < -\s < 10. The stability dependence of the flatness factors is not so clear as that noted in the standrard deviation and skewness factors. Dissipation rates of carbon dioxide, water vapor and temperature variance are well related to the spectral peak wavelength. This seems to be real since the local production and local dissipation rates are the main terms, almost balancing one another in the variance budget equations for scalar entities.  相似文献   

10.
A one-month experiment was performed at Amsterdam Island in January 1998, to investigate the factors controlling the short-term variations of atmospheric dimethylsulfide (DMS) and its oxidation products in the mid-latitudes remote marine atmosphere. High mixing ratios of DMS, sulfur dioxide (SO2) and dimethylsulfoxide (DMSO) have been observed during this experiment, with mean concentrations of 395 parts per trillion by volume (pptv) (standard deviation, = 285, n = 500), 114 pptv ( = 125, n = 12) and 3 pptv ( = 1.2, n = 167), respectively. Wind speed and direction were identified as the major factors controlling atmospheric DMS levels. Changes in air temperature/air masses origin were found to strongly influence the dimethylsulfoxide (DMSO)/DMS and SO2/DMS molar ratios, in line with recent laboratory data. Methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 2–) mean concentrations in aerosols during this experiment were 12.2± 6.5 pptv (1, n=47) and 59 ± 33 pptv (1, n=47), respectively. Evidence of vertical entrainment was reported following frontal passages, with injection of moisture-poor, ozone-rich air. High MSA/ nss-SO4 2– molar ratios (mean 0.44) were calculated during these events. Finally following frontal passages, few spots in condensation nuclei (CN) concentration were also observed.  相似文献   

11.
The relation between the turbulence Reynolds numberR and a Reynolds numberz* based on the friction velocity and height from the ground is established using direct measurements of the r.m.s. longitudinal velocity and turbulent energy dissipation in the atmospheric surface layer. Measurements of the relative magnitude of components of the turbulent kinetic energy budget in the stability range 0 >z/L 0.4 indicate that local balance between production and dissipation is maintained. Approximate expressions, in terms of readily measured micrometeorological quantities, are proposed for the Taylor microscale and the Kolmogorov length scale .  相似文献   

12.
In the stable atmospheric boundary layer (SBL), the interaction of processes in numerical weather prediction (NWP) models seems to test their representation more stringently than their separate 'validation.Some SBL schemes derived from micrometorological research seem to allow a 'decoupling behaviour when implemented in NWP. That is, turbulence dies out from the ground upwards. Such 'decoupling of the surface from atmospheric fluxes can permit dramatic and possibly unrealistic falls in surface temperature. This study traces the mechanism of model decoupling, asks whether this behaviour is in any sense correct and considers the implications.It is shown that decoupling can occur in idealized single-column models, originating from an unstable boundary-mode. This behaviour can depend critically on parameters such as surface roughness and soil thermal diffusivity as well as turbulence. But the turbulence dependence arises through the response of the boundary layer as a whole, and not just the surface-layer scheme. Such decoupling arises from the 'physics, rather than the finite-difference schemes, and appears to occur sometimes in the real atmosphere.  相似文献   

13.
A Comparative Analysis of Transpiration and Bare Soil Evaporation   总被引:4,自引:0,他引:4  
Transpiration Ev and bare soil evaporation Eb processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content . For a homogeneous areal distribution of we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of are simulated by Monte-Carlo runs assuming normal distributions of .The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theEv()-Eb() differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation Av() and bare soil Ab() surfaces differ much less than the Ev() and Eb() curves. The results suggest that Ev is much more non-linearly related to environmental conditions than Eb. Both Ev and Eb depend on the distribution of , the wetness regime and the parameterization used. With the parameterizations, Eb showed greater variations than Ev. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.  相似文献   

14.
Summary ¶The dependence of the discharge (Q) of two contrasting UK rivers (Itchen, Ewe) on concurrent and lagged regional climate (RC) and atmospheric circulation (AC) variations was assessed over the period 1974–97. RC variables used were temperature and precipitation; the AC indicators used were 850hPa water vapour flux anomalies (VF) at five western European stations, and the Arctic (AOI) and North Atlantic Oscillation (NAOI) indices. Correlation analyses were performed to assess Q-RC and Q-AC relationships before two sets of multiple linear regression models were developed to specify monthly Q values from RC and AC. Q-RC associations were generally stronger and more seasonally consistent than Q-AC relationships, with the flow of the Itchen (southern England) and Ewe (northern Scotland) being most sensitive to temperature (TEMP) and precipitation (PPT) respectively. In most months, discharge values of both rivers were positively associated to zonal and vector VF anomalies over the British Isles and northern France, but inversely related to vector VF over Iceland. The AOI and NAOI were significantly related to the Ewes flow only; relationships were strongest in the winter half-year. Monthly AC regression models explained 14.8–81.0% (25.0–90.9%) of the discharge variability of the Itchen (Ewe). Strong AC forcing of the Itchens discharge is confined to the winter (DJF), since the Itchens direct meteorological signal is attenuated by groundwater dynamics in other seasons. Analysis of anomalous flow periods (e.g. 1988–92 and 1995–7) revealed that discharge does not always respond in the same manner to a given RC/AC forcing, as the relationships themselves vary inter-annually as well as between the two rivers.  相似文献   

15.
Cloud water and interstitial aerosol samples collected at Mt. Sonnblick (SBO) were analyzed for sulfate and aerosol carbon to calculate in-cloud scavenging efficiencies. Scavenging efficiencies for sulfate (SO) ranged from 0.52 to 0.99 with an average of 0.80. Aerosol carbon was scavenged less efficiently with an average value (AC) of 0.45 and minimum and maximum values of 0.14 and 0.81, respectively. Both SO and AC showed a marked, but slightly different, dependence on the liquid water content (LWC) of the cloud. At low LWC, SO increased with rising LWC until it reached a relatively constant value of 0.83 above an LWC of 0.3 g/m3. In the case of aerosol carbon, we obtained a more gradual increase of AC up to an LWC of 0.5 g/m3. At higher LWCs, _ remained relatively constant at 0.60. As the differences between SO and A varied across the LWC range observed at SBO, we assume that part of the aerosol carbon was incorporated into the cloud droplets independently from sulfate. This hypothesis is supported by size classified aerosol measurements. The differences in the size distributions of sulfate and total carbon point to a partially external mixture. Thus, the different chemical nature and the differences in the size and mixing state of the aerosol particles are the most likely candidates for the differences in the scavenging behavior.  相似文献   

16.
A Wind Tunnel Model for Quantifying Fluxes in the Urban Boundary Layer   总被引:9,自引:6,他引:3  
Transport of pollution and heatout of streets into the boundary layer above is not currently understood and so fluxes cannot be quantified. Scalar concentration within the street is determined by the flux out of it and so quantifying fluxes for turbulent flow over a rough urban surface is essential. We have developed a naphthalene sublimation technique to measure transfer from a two-dimensional street canyon in a wind tunnel for the case of flow perpendicular to the street. The street was coated with naphthalene, which sublimes at room temperature, so that the vapour represented the scalar source. The transfer velocity wT relates the flux out of the canyon to the concentration within it and is shown to be linearly related to windspeed above the street. The dimensionless transfer coefficient wT/U represents the ventilation efficiency of the canyon (here, wT is a transfer velocity,U is the wind speed at the boundary-layer top). Observed values are between 1.5 and 2.7 ×10-3 and, for the case where H/W0 (ratio of buildingheight to street width), values are in the same range as estimates of transfer from a flat plate, giving confidence that the technique yields accurate values for street canyon scalar transfer. wT/U varies with aspect ratio (H/W), reaching a maximum in the wake interference regime (0.3 < H/W < 0.65). However, when upstream roughness is increased, the maximum in wT/U reduces, suggesting that street ventilation is less sensitive to H/W when the flow is in equilibrium with the urban surface. The results suggest that using naphthalene sublimation with wind-tunnel models of urban surfaces can provide a direct measure of area-averaged scalar fluxes.  相似文献   

17.
The standard E – model generates aplanetary boundary layerthat appears to be much too deep. The cause of theproblem is traced to the equation for the dissipationrate () of turbulent kinetic energy (E), specifically theparameterization of dissipation production anddestruction. In the context of atmosphericboundary-layer modelling, we argue that a part of thedissipation production should be modelled as the inputto the spectral cascade from the energy-containingpart of the spectrum, with a characteristic length , while the equilibrium imbalancebetween local production and destruction ofdissipation is modelled as proportional toE2/E, as in the standard model. Wepropose an E – – turbulence closurescheme, in which both the mixing length, m, and are prescribed. The importance ofthe equation is diminished, though itstill determines the dissipation rate in the Eequation.  相似文献   

18.
The relaxed eddy accumulation (REA), method based on the conditional sampling concept, has received increasing attention over the past few years as it can be used to measure surface fluxes of a wide variety of trace gases for which fast response analysers are not available. In the REA method, a turbulent flux is simply expressed as the product of the standard deviation of vertical wind velocity, the difference between mean scalar concentration in the updrafts and downdrafts and an empirical coefficient, (about 0.63 as based on simulations with a Gaussian distribution, and 0.58 as derived from experimental data). A simulation technique is developed here to evaluate the performance of a ground-based REA system. This analysis uses generated series whose internal structure can be controlled to a large extent. They are stationary and their characteristics are similar to those of physical turbulence. In a first step the influence of some statistical characteristics of vertical velocity and scalar concentration series is investigated. The effect of the third- and fourth-order moments can explain to some degree the difference between calculated and measured values. The impact of a threshold on the vertical velocity is then considered, and its effect on is quantified. The influence of the time lag between and the effective scalar sampling, and the consequences of lowpass filtering of the signal are also investigated. The simulation technique presented in this study can be used to develop elaborate algorithms for near real-time conditional sampling, based on the statistical characteristics of the previous sample.  相似文献   

19.
The present study explores the extent to which the logarithmic region of the adiabatic atmospheric boundary layer can be modeled using a three-dimensional large eddy simulation. A value of the von Kármán constant (LES) is obtained by determining the slope of a logarithmic portion of the velocity profile. Its numerical value is found to be dependent on the value of the Smagorinsky-Model Reynolds number, ReSM: the value of LES increases with ReSM. Results indicate that LES approaches a value of 0.35 as ReSM reaches about 7.75 × 105 for the largest domain. The sensitivity of LES to the profile region over which it is evaluated has been tested. Results show that LES is not sensitive to the depth of this evaluation region when we employ five grids above the sub-grid buffer layer where sub-grid-scale effects dominate. The maximum LES is obtained when the lower boundary of the evaluation region is just above the top of the sub-grid-scale buffer layer. This result is consistent with modelled mean speed and resolved-scale shear stress profiles.  相似文献   

20.
A simple formula, (1 + (2fmc))-1,is proposed to estimate the attenuation of a scalar flux measurement made by eddy-correlation using a fast-response anemometer and a linear, first-order-response scalar sensor with a characteristic time constant c.In this formula, =7/8 for neutral and unstable stratification within the surface-flux layer and =1 both within the convective boundary layer (CBL) and for stable stratification in the surface layer.fm is the frequency of the peak of the logarithmic cospectrum and can be estimated from fm = nm /z, where z is the measurement height and is thewind speed at that height. The dimensionless frequency at the cospectral maximum nm is estimated here from observations of its behavioras a function of atmospheric stability, z/L within the surface layeror z/zi within the CBL, where L is the Obukhov stability length and zi is the depth of the CBL. The predicted dependence of flux attenuation on measurement height is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号