首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Monte Carlo simulation is used in order to study the effects of wave-particle interactions (WPI) on H+ distributions in the polar wind outflow. The simulation also considers effects of the gravity, the polarization electric field, the divergence of geomagnetic field lines and H+−O+ Coulomb collisions. The proton velocity distribution function (VDF) and the profiles of its moments (density, bulk velocity, parallel and perpendicular temperatures, heat flux…) are found for different levels of WPI, i.e., for different values of the normalized diffusion rate in the velocity space (D ). We find that the wave-particle interactions accelerate the polar wind and can have important effects on the double-hump H+ distribution obtained in the transition region between the collision-dominated low altitudes and the collisionless high altitude regions.  相似文献   

2.
Einstein A-coefficients for the electric-dipole transitions between the rotational levels up to 400 cm–1 in the ground vibrational state of methylene (CH2) are calculated. The coefficients are used to compute the mean-radiative-life-times of the levels. It is concluded that in hot molecular clouds, CH2 may be detected through the stimulated emission of the radiation at 69.36 GHz.  相似文献   

3.
On 14 December 1971, during the maximum of the Geminid Meteor Shower, the positive ion composition was measured in the D- and E-regions above Sardinia. The payload was launched at 12:11 UT, and measurements were made between 68.5 and 152 km altitude. A magnetic sector type mass spectrometer with dual collector and a liquid helium cryopump was used. The instrument covered the mass range from 11 to 73 AMU and had a resolution at the 1 % level of MM = 60.In the E-region two distinct metal ion layers were observed, centred at 95 and 119 km, respectively. In the lower layer Fe+ and Mg+ were the most abundant metal ions, and in the upper layer Si+ was dominant. Si+ ions were conspicuously absent in the lower layer (Si+/Mg+ < 2 × 10−3). This particular behaviour of Si could be due to the inability of atomic oxygen to reduce SiO, whereas in the upper layer Si+ions might be formed directly by the charge rearrangement reaction SiO + O+ → Si++ O2. In addition, Na+, Al+, K+, Ca+, Ti+, Cr+, Ni+ and Co+ were also identified. The metal oxide ions AlO+ and SiO+ were detected, and probably also MgO+ and SiOH+. The concentrations of NO+ and O2+ show a deep minimum at the maximum of the lower metal ion layer. A very high neutral metal density of 6 × 107 cm−3 would be required to explain this feature as resulting from charge transfer reactions between the molecular and metal ions Such a high metal density is in contradiction to direct measurements and to cosmic dust influx rates. The isotopic ratios of Mg+, Si+, and of the major isotopes of Fe+ and Ni+ were measured, some of them with an accuracy of a few per cent (25Mg+/24Mg+ = 0.124 ± 0.006; 26Mg+/24Mg+ = 0.139 ± 0.008; 29Si+/28Si+ = 0.050 ± 0.004; 54Fe+/56Fe+ = 0.069 ± 0.005; 57Fe+/56Fe+ = 0.029 ± 0.004; 60Ni+/58Ni+ = 0.31 ± 0.12). The isotopic ratios agree within the experimental errors with the corresponding terrestrial ratios, thus giving evidence that these elements have the same isotopic composition in the Geminid meteors as in the Earth's crust, in chrondrites, and in lunar material.In the D-region the ions Na+H2O, Na+(H2O)2, NaO+ and NaOH+ were tentatively identified. Below 95 km altitude the relative abundances of the ions 32+, 33+ and 34+ deviate from the values expected for molecular oxygen isotopes. Their abundances can not be explained by the presence of S-ions only, and we conclude that HO2+ and H2O2+ are present.The ion density profiles of the major D-region constituents show some remarkable deviations from typical D-region conditions. These deviations are related to the winter anomaly in ionospheric absorption observed over Spain during the launch day, and our data represent the first ion composition measurements during such conditions. In particular, H+(H2O)2 is the major ion only up to 77 km, and at 80 km altitude the NO+ concentration exceeds the total water cluster ion density by almost two orders of magnitude. An increase of the mesospheric NO, O3 and O concentrations as well as of the O/H2O ratio could explain the observed ion profiles. The low NO+/O2+ ratios of approximately unity measured in the E-region are in agreement with a strong downward transport of NO and/or O into the mesosphere during the launch day. A simple four-ion model was used to interpret our D-region data. The calculated neutral NO concentration increases from about 2 × 107 cm−3 at 85 km to 5 × 107 cm−3 at 80 km. In addition, evidence for an increased O2+ production rate above 83 km was found, probably due to an enhanced O3 concentration. We conclude that our data strongly support vertical transport of minor neutral consituents as cause of the winter anomaly.  相似文献   

4.
An ultraviolet spectral probe for a hydrogen-rich planetary atmosphere, such as that of Jupiter, is suggested, utilizing discrete lines in the H2staggered+ 2u?1g electronic transition. For the Jovian atmosphere, the dominant mechanism for exciting H2+ to its 2u state appears to be photoexcitation, principally through absorption of the solar Lyman-α line. We estimate that the Jovian column emission rate of the H2+ 2u(ν′ = 2, J′ = 1) →1g(ν″ = 18,J″ = 0) fluorescent line at 1236.6 Å is if1 photon cmsu-2 secsu-1; i.e., that if1 photon secsu-1 of this radiation would strike a 15-cm diameter mirror in a Jupiter fly-by at an impact parameter of 3 × 105km. The critical role of corrections to the Born-Oppenheimer approximation in the use of an H2+ probe is discussed.  相似文献   

5.
《Planetary and Space Science》1999,47(6-7):745-763
An improved magnetohydrodynamic (MHD) model with chemistry is presented. The analysis of the source and sink terms for H2O + shows that for small comets up to 11% of water molecules are finally ionized. For large comets (such as Halley) this fraction decreases to less than 3%. From the MHD scaling laws a similarity law for the individual ion densities is deduced which takes into account that the mother molecules are depleted by dissociation. This is applied to H2O + ions. Radial density profiles from model calculations, observations by Giotto near comet Halley, and ground based observations of three comets confirm this scaling law for H2O + ions. From the similarity law for the density a scaling law for the column density is derived which is more convenient to apply for ground based observations. From these scaling laws methods are derived which allow the determination of the water production rate from the ground based images of the H2O + ions. Finally, the two dimensional images of model column densities are compared with observations.  相似文献   

6.
Close to 30 deuterated molecules have now been detected in the ISM, including doubly-deuterated species D2H+, ND2H, D2CO, CHD2OH, D2S, and D2CS, as well as triply-deuterated ammonia and methanol. We review the current understanding of depletion and deuteration processes in cold, dense interstellar medium (ISM) and discuss the utility of deuteroammonia as a tracer of the physical conditions and kinematics of cold, dense gas.  相似文献   

7.
The potential energy curves for theX 2 Σ+ andB 2 Σ+ states of CO+ have been constructed by the Rydberg-Klein-Rees (RKR) method as modified by van der Sliceet al. The dissociation energy is estimated to be 7.70±0.19 eV by the method of curve fitting using the five parameter Hulburt-Hirschfelder’s function. The estimated value is in good agreement with the value (7.839 eV) given by Misraet al. Carefull observation of the results reveals that accurateD 0 value for CO+ is 8.33 eV  相似文献   

8.
The Franck-Condon factors and r-centroids, which are very closelyrelated to relative vibrational transition probabilities, have beenevaluated by the more reliable numerical integration procedure forthe bands of c 1 - a 1 and f 1 - a 1 systems of CN + and C 2 + u- X 2 + g and D 2 g- A 2 u systems of N + 2 molecular ions of astrophysical interest,using a suitable potential.  相似文献   

9.
Measured rates are presented for the reaction of He+ ions with H2 (and D2) molecules to form H+, H2+, and HeH+ ions, as well as for the subsequent reactions of H+ and HeH+ ions with H2 to form H3+. The neutralization of H3+ (and H5+) ions by dissociative recombination with electrons is shown to be fast. The reaction He+ + H2 is slow (k = 1.1 × 10?13 cm3/sec at300°K) and produces principally H+ by the dissociative charge transfer branch. It is concluded that there may be a serious bottleneck in the conversion of two of the primary ions of the upper Jovian ionosphere, H+ and He+ (which recombine slowly), to the rapidly recombining H3+ ion (α[H3+]?3.4 × 10?7 cm3/sec at 150°K).  相似文献   

10.
The potential energy curves for the electronic ground states of astrophysically important NbO, SiC, CP, PH+, SiF+, and NH+ molecules are constructed by the RKRV method. The dissociation energies are determined by curve-fitting techniques using the five-parameter Hulburt-Hirschfelder function. The estimated dissociation energies are 7.86±0.16, 3.66±0.09, 5.12±0.12, 3.08±0.09, 6.46±0.14, and 3.02±0.09 eV for NbO, SiC, CP, PH+, SiF+, and NH+, respectively. The estimatedD 0 values are in reasonably good agreement with literature values. If we utilizeD 0 values of PH+, SiF+, and NH+, ionization potentials for PH, SiF, and NH are derived. The ionization potentials are 10.12, 7.13, and 13.66 eV, respectively, for PH, SiF, and NH. Dissociation energies for the above molecules are also estimated by use of the Birge-Sponer extrapolation and Hildenbrand and Murad methods.  相似文献   

11.
We formulate rate equations for the reaction network coupling H, H, H+, H2, and H2 +. We attempt to systematize the notation, and to write the equations in a form suitable for modern computational methods of handling the coupled rate equations and radiative transfer equations, for both dynamical and static atmospheres. We have accounted for more processes than are generally considered in most current work; some of these may have an impact on the equilibrium of H (hence its opacity) and on charge conservation (hence the proton density) in the atmospheres of solar-type stars.Operated by the Association of Universities for Research in Astronomy, Inc. under Contract AST 78-17292 with the National Science Foundation.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
Rate coefficients for several two- and three-body ion-molecule reactions involving hydrocarbons have been determined at thermal energies and above using drift tube-mass spectrometer techniques. The measured rates for clustering and breakup reactions involving CH5+ and C2H5+ ions in methane are found to be strongly temperature dependent in the range from 80 to 240 K. The equilibrium constants determined for these reactions differ somewhat from those of Hiraoka and Kebarle. Rate coefficients for two-body reactions of CH5+, C2H5+, N+, H+ and D+ ions with methane and/or ethane have been measured. The results indicate that the product yields of several of the fast ion-molecule reactions depend strongly on ion energy (temperature), and therefore previous room-temperature results may be of limited value for model calculations of Titan's atmosphere.  相似文献   

13.
The possibility of H3+ playing a role as a sink for noble gases has been investigated in the case of Argon. Elaborate quantum methods (ab initio Coupled Cluster and density functional BH&HLYP levels of theory) have been shown to reproduce the rotational constants within 0.3% together with the only known IR frequency on the test case of Ar…D3+. Dissociation energies of (Ar)n…H3+ as a function of cluster size, i.e. 7.2 (n=1), 3.7 (n=2), 3.6 (n=3), 1.6 (n=4), 1.7 (n=5) kcal/mol, follow the pattern established experimentally for (Ar)n…H3+ and (H2)n…H3+ series. Rotational constants and harmonic frequencies of (Ar)n…H3+ (n=1-3) are presented.  相似文献   

14.
We have detected new HD absorption systems at high redshifts, z abs = 2.626 and z abs = 1.777, identified in the spectra of the quasars J0812+3208 and Q1331+170, respectively. Each of these systems consists of two subsystems. The HD column densities have been determined: log N HDA = 15.70 ± 0.07 for z A = 2.626443(2) and log N HDB = 12.98 ± 0.22 for z B = 2.626276(2) in the spectrum of J0812+3208 and log N HDC = 14.83 ± 0.15 for z C = 1.77637(2) and log N HDD = 14.61 ± 0.20 for z D = 1.77670(3) in the spectrum of Q1331+170. The measured HD/H2 ratio for three of these subsystems has been found to be considerably higher than its values typical of clouds in our Galaxy.We discuss the problem of determining the primordial deuterium abundance, which is most sensitive to the baryon density of the Universe Ωb. Using a well-known model for the chemistry of a molecular cloud, we have estimated the isotopic ratio D/H=HD/2H2 = (2.97 ± 0.55) × 10−5 and the corresponding baryon density Ωb h 2 = 0.0205−0.0020+0.0025. This value is in good agreement with Ωb h 2 = 0.0226−0.00060.0006 obtained by analyzing the cosmic microwave background radiation anisotropy. However, in high-redshift clouds, under conditions of low metallicity and low dust content, hydrogen may be incompletely molecularized even in the case of self-shielding. In this situation, the HD/2H2 ratio may not correspond to the actual D/H isotopic ratio. We have estimated the cloud molecularization dynamics and the influence of cosmological evolutionary effects on it.  相似文献   

15.
Thd H 3 + molecular ion plays an important role in the chemistry of astronomical objects as it protonates the neutral species. The authors have recently calculated the partition functions of H 3 + which may be used to compute the equilibrium constants for the chemical reaction H2+H2 +H 3 + +H. In this short communication we have calculated the equilibrium constants for the temperature range from 500 to 8000 K. The results are also presented in the polynomial form.  相似文献   

16.
Arnold and Krankowsky (Int. Symp. Solar-Terrestrial Physics, Sao Paulo, 1974) have reported D-region positive ion measurements in which a number of new cluster ions of minor abundance were apparent. These ions, which they attributed to clusters with N2, O2, and CO2 ligands, were observable due to enhanced O+2 production and to the low temperatures during the flight. Here we consider these in situ ion data in view of recent laboratory ion-molecule reaction experiments which cast light on the mechanism leading from O+2 to water clusters in air mixtures. Possible intermediates are discussed in terms of ion stability and existence of effective reaction paths under the given atmospheric conditions. These proposed intermediates are then fitted into a coherent reaction mechanism resulting in significant new pathways for the formation of protonated water clusters. A semiquantitative measure of the importance of each of the pathways is then calculated by the use of signal flow graph theory.  相似文献   

17.
A model of the predawn bulge ionosphere composition and structure is constructed and compared with the ion mass spectrometer measurements from the Pioneer Venus Orbiter during orbits 117 and 120. Particular emphasis is given to the identification of the mass-2 ion which we find unequivocally due to D+ (and not H2+). The atmospheric D/H ratio of 1.4% and 2.5% is obtained at the homopause (~ 130 km) for the two orbits. The H2+ contribution to the mass-2 ion density is less than 10%, and the H2 mixing ratio must be <0.1 ppm at 130 km altitude. The He+ data require a downward He+ flux of ~2 × 107 cm?2 sec?1 in the predawn region which suggest that the light ions also flow across the terminator from day to night along with the observed O+ ion flow.  相似文献   

18.
High-velocity resolution (V=0.07 km s–1) H12CO+ (J=1–0) and H13CO+ (J=1–0) observations have been carried out towards L1551 by use of the Metsähovi 14-m radio telescope. The observations reveal a bipolar H12CO+ outflow from the pre-Main-Sequence star IRS-5 which is centred on a flattened, 3 long H13CO+ cloud clump. This disk-like cloud structure has a velocity gradient ranging from 6.56 km s–1 in the SE to 7.06 km s–1 in the NW. It is noteworthy that the direction of the H12CO+ ion outflow is oriented E-W, and not along the NE-SW axis of the more extended CO outflow. In the disk area the H12CO+ spectra show to distinct velocity components. The right-hand H12CO+ velocity component agrees with the velocity of the H13CO+ disk. The left-hand H12CO+ component seems to belong to the outflow and the dense lobe material. The H12CO+ isovelocity contour map indicates that the dense lobe material is rotating (V rot 0.6 km s–1) in the same sense as the H13CO+ disk. This supports hydromagnetic outflow models.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain  相似文献   

19.
Frank-Condon factors for H2O+ bands have been calculated. They are used to estimate the photon scattering coefficient g8.0 for the (8,0) band at 6158 Å.  相似文献   

20.
A unified picture of the photodissociation of theC 2 H radical has been developed using the results from the latest experimental and theoretical work. This picture shows that a variety of electronic states ofC 2 are formed during the photodissociation of theC 2 H radical even if photoexcitation accesses only one excited state. This is because the excited states have many avoided corssings and near intersections where two electronic states come very close to one another. At these avoided crossings and near intersections, the excited radical can hop from one electronic state to another and access new final electronic states of theC 2 radical. The complexity of the excited state surfaces also explains the bimodal rotational distributions that are observed in all of the electronic states studied. The excited states that dissociate through a direct path are limited by dynamics to produceC 2 fragments with a modest amount of rotational energy, whereas those that dissociate by a more complex path have a greater chance to access all of phase space and produce fragments with higher rotational excitation. Finally, the theoretical transition moments and potential energy curves have been used to provide a better estimate of the photochemical lifetimes in comets of the different excited states of theC 2 H radical. The photochemically active states are the 22+, 22II, 32II, and 32+, with photodissociation rate constants of 1.0×10–6, 4.0×10–6, 0.7×10–6, and 1.3×10–6s–1, respectively. These rate constants lead to a total photochemical lifetime of 1.4×105 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号