首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal case, in which the total field horizontal stresses increase with the reservoir re-pressurization in a manner opposite to their reduction with the reservoir depletion. However, as the most pessimistic case of assuming the total horizontal stresses staying the same over the CO2 injection, faulting could be reactivated on a fault with the least favorable geometry once the reservoir pressure reaches approximately 7.7 MPa. In addition, the initial CO2 injection could lead to a high risk that a fault with a cohesion of less than 5.1 MPa could be activated due to the significant effect of reduced temperature on the field stresses around the injection site.  相似文献   

3.
Careful site characterization is critical for successful geologic storage of carbon dioxide (CO2) because of the many physical and chemical processes impacting CO2 movement and containment under field conditions. Traditional site characterization techniques such as geological mapping, geophysical imaging, well logging, core analyses, and hydraulic well testing provide the basis for judging whether or not a site is suitable for CO2 storage. However, only through the injection and monitoring of CO2 itself can the coupling between buoyancy flow, geologic heterogeneity, and history-dependent multi-phase flow effects be observed and quantified. CO2 injection and monitoring can therefore provide a valuable addition to the site-characterization process. Additionally, careful monitoring and verification of CO2 plume development during the early stages of commercial operation should be performed to assess storage potential and demonstrate permanence. The Frio brine pilot, a research project located in Dayton, Texas (USA) is used as a case study to illustrate the concept of an iterative sequence in which traditional site characterization is used to prepare for CO2 injection and then CO2 injection itself is used to further site-characterization efforts, constrain geologic storage potential, and validate understanding of geochemical and hydrological processes. At the Frio brine pilot, in addition to traditional site-characterization techniques, CO2 movement in the subsurface is monitored by sampling fluid at an observation well, running CO2-saturation-sensitive well logs periodically in both injection and observation wells, imaging with crosswell seismic in the plane between the injection and observation wells, and obtaining vertical seismic profiles to monitor the CO2 plume as it migrates beyond the immediate vicinity of the wells. Numerical modeling plays a central role in integrating geological, geophysical, and hydrological field observations.  相似文献   

4.
Pressure buildup limits CO2 injectivity and storage capacity and pressure loss limits the brine production capacity and security, particularly for closed and semi-closed formations. In this study, we conduct a multiwell model to examine the potential advantages of combined exhaustive brine production and complete CO2 storage in deep saline formations in the Jiangling Depression, Jianghan Basin of China. Simulation results show that the simultaneous brine extraction and CO2 storage in saline formation not only effectively regulate near-wellbore and regional pressure of storage formation, but also can significantly enhance brine production capacity and CO2 injectivity as well as storage capacity, thereby achieving maximum utilization of underground space. In addition, the combination of brine production and CO2 injection can effectively mitigate the leakage risk between the geological units. With regard to the scheme of brine production and CO2 injection, constant pressure injection is much superior to constant rate injection thanks to the mutual enhancement effect. The simultaneous brine production of nine wells and CO2 injection of four wells under the constant pressure injection scheme act best in all respects of pressure regulation, brine production efficiency, CO2 injectivity and storage capacity as well as leakage risk mitigation. Several ways to further optimize the combined strategy are investigated and the results show that increasing the injection pressure and adopting fully penetrating production wells can further significantly enhance the combined efficiency; however, there is no obvious promoting effect by shortening the well spacing and changing the well placement.  相似文献   

5.
A numerical model was developed to investigate the potential to detect fluid migration in a (homogeneous, isotropic, with constant pressure lateral boundaries) porous and permeable interval overlying an imperfect primary seal of a geologic CO2 storage formation. The seal imperfection was modeled as a single higher-permeability zone in an otherwise low-permeability seal, with the center of that zone offset from the CO2 injection well by 1400 m. Pressure response resulting from fluid migration through the high-permeability zone was detectable up to 1650 m from the centroid of that zone at the base of the monitored interval after 30 years of CO2 injection (detection limit = 0.1 MPa pressure increase); no pressure response was detectable at the top of the monitored interval at the same point in time. CO2 saturation response could be up to 774 m from the center of the high-permeability zone at the bottom of the monitored interval, and 1103 m at the top (saturation detection limit = 0.01). More than 6% of the injected CO2, by mass, migrated out of primary containment after 130 years of site performance (including 30 years of active injection) in the case where the zone of seal imperfection had a moderately high permeability (10??17 m2 or 0.01 mD). Free-phase CO2 saturation monitoring at the top of the overlying interval provides favorable spatial coverage for detecting fluid migration across the primary seal. Improved sensitivity of detection for pressure perturbation will benefit time of detection above an imperfect seal.  相似文献   

6.
A pilot site for CO2 storage in coal seams was set-up in the Upper Silesian Coal Basin in Poland in the scope of the RECOPOL project, funded by the European Commission. About 760 tons CO2 were injected into the reservoir from August 2004 to June 2005. Breakthrough of the injected CO2 was established, which resulted in the production of about 10% of the injected CO2 in this period. This paper reports on activities performed under the European Commission project MOVECBM that aimed at the assessment of the storage performance of the reservoir in the follow-up period, i.e. whether the injected CO2 was adsorbed onto the coal or whether it was still present as free gas in the pore space. The injection well was used for this purpose, as the production well had to be abandoned for permitting reasons. Several operational periods can be defined between the last injection in June 2005 and the abandonment of the well in October 2007. In the first period the well was shut-in to observe the pressure fall-off, from about 15.0 MPa at the wellhead after the last injection until about 4.5 MPa at the end of 2005. This pressure fall-off curve showed that the reservoir permeability was very low. This seemed to confirm the observed swelling of the coal during the injection period. In the first months of 2006 the pressure at the wellhead was decreased by releasing gas in a controlled way. The amount and composition of the gas were measured. As a result of the pressure reduction, the well flooded with water. A production pump was placed on the former injection well, enabling active production from the coal from March to September 2007. Results of these operations showed that whereas the gas production rates were as expected based on the experience with the production well, the water production was remarkably low. This could be related to permeability issues or, alternatively, indicate a drying effect of the CO2 in the reservoir. Further, the gas composition showed a predominance of CO2 over CH4 during the gas release that changed gradually into a predominance of CH4 over CO2 during the production phase. Although stabilization was not reached within the given production period, the composition approached a 60% methane, 40% CO2 ratio. This indicates that the exchange of these gases is more complex than often envisaged. After removal of the pump the well was filled with water, which ceased the gas release. This indicates that the pressure in the reservoir was back to its original, hydrostatic, state. As the total volume of CO2 produced was only a fraction of the amount that was injected, it can be concluded that the CO2 was taken up by the coal and is currently adsorbed. This gives confidence in the long-term stability of the injected CO2.  相似文献   

7.
CO2 injection in saline aquifers induces temperature changes owing to processes such as Joule–Thomson cooling, endothermic water vaporization, exothermic CO2 dissolution besides the temperature discrepancy between injected and native fluids. CO2 leaking from the injection zone, in addition to initial temperature contrast due to the geothermal gradient, undergoes similar processes, causing temperature changes in the above zone. Numerical simulation tools were used to evaluate temperature changes associated with CO2 leakage from the storage aquifer to an above-zone monitoring interval and to assess the monitorability of CO2 leakage on the basis of temperature data. The impact of both CO2 and brine leakage on temperature response is considered for three cases (1) a leaky well co-located with the injection well, (2) a leaky well distant from the injector, and (3) a leaky fault. A sensitivity analysis was performed to determine key operational and reservoir parameters that control the temperature signal in the above zone. Throughout the analysis injection-zone parameters remain unchanged. Significant pressure drop upon leakage causes expansion of CO2 associated with Joule–Thomson cooling. However, brine may begin leaking before CO2 breakthrough at the leakage pathway, causing heating in the above zone. Thus, unlike the pressure which increases in response to both CO2 and brine leakage, the temperature signal may differentiate between the leaking fluids. In addition, the strength of the temperature signal correlates with leakage velocity unlike pressure signal whose strength depends on leakage rate. Increasing leakage conduit cross-sectional area increases leakage rate and thus increases pressure change in the above zone. However, it decreases leakage velocity, and therefore, reduces temperature cooling and signal. It is also shown that the leakage-induced temperature change covers a small area around the leakage pathway. Thus, temperature data will be most useful if collected along potential leaky wells and/or wells intersecting potential leaky faults.  相似文献   

8.
CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve the goal of energy exploitation and CO2 geological sequestration. Taking Zhacanggou as research area, a “Three-spot” well pattern (one injection with two production), “wellbore–reservoir” coupled model is built, and a constant injection rate is set up. A fully coupled wellbore–reservoir simulator—T2Well—is introduced to study the flow mechanism of CO2 working as heat transmission fluid, the variance pattern of each physical field, the influence of CO2 injection rate on heat extraction and the potential and sustainability of heat resource in Guide region. The density profile variance resulting from temperature differences of two wells can help the system achieve “self-circulation” by siphon phenomenon, which is more significant in higher injection rate cases. The density of CO2 is under the effect of both pressure and temperature; moreover, it has a counter effect on temperature and pressure. The feedback makes the flow process in wellbore more complex. In low injection rate scenarios, the temperature has a dominating impact on the fluid density, while in high rate scenario, pressure plays a more important role. In most scenarios, it basically keeps stable during 30-year operation. The decline of production temperature is <5 °C. However, for some high injection rate cases (75 and 100 kg/s), due to the heat depletion in reservoir, there is a dramatic decline for production temperature and heat extraction rate. Therefore, a 50-kg/s CO2 injection rate is more suitable for “Three-spot” well pattern in Guide region.  相似文献   

9.

Tight heterogeneous glutenite reservoir is typically not easy to form complex hydraulic fracture (HF) due to its poor physical properties, poor matrix seepage capacity, and small limit discharge radius and undeveloped natural fracture system. To improve the HF complexity and the stimulated reservoir volume (SRV), a novel stimulation technology called CO2 miscible fracturing has been introduced and its fracturing mechanism has been studied. The CO2 miscible fracturing modifies the in situ stress field by injecting low viscosity fluid to increase the HF complexity and SRV. Therefore, a series of numerical simulations based on a hydro-mechanical-damage model were carried out to study the effects of low viscosity fluid pre-injection on pore pressure, stress field, and fracturing effect in tight heterogeneous glutenite reservoirs. The results indicate that the low viscosity fluid injection can effectively increase the pore pressure around the wellbore and reduce the effective stress of the glutenite. The FCI and SRV increase with the increase of the pre-injection amount of the low viscosity fluid. The HF complexity and SRV can be improved by pre-injecting low viscosity fluid to transform the in situ stress field. The field application of this technology in a well of Shengli Oilfield showed that low-viscosity fluid pre-injection can effectively increase the width of the fractured zone, improve the SRV, and optimize the fracturing effect.

  相似文献   

10.
This study examined the impacts of reservoir properties on carbon dioxide (CO2) migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as spatial–temporal distributions of gas pressure, which can be reasonably monitored in practice. The injection reservoir was assumed to be located 1,400–1,500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of the domain, which extended out 8,000 m from the injection well. The CO2 migration was simulated using the latest version of the simulator, subsurface transport over multiple phases (the water–salt–CO2–energy module), developed by Pacific Northwest National Laboratory. A nonlinear parameter estimation and optimization modeling software package, Parameter ESTimation (PEST), is adopted for automated reservoir parameter estimation. The effects of data quality, data worth, and data redundancy were explored regarding the detectability of reservoir parameters using gas pressure monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy. The feasibility of using CO2 saturation data for improving reservoir characterization was also discussed.  相似文献   

11.
Microscopic modelling of the hydraulic fracturing process   总被引:2,自引:1,他引:1  
A microscopic perspective is introduced in this study which offers a detailed insight at the inter-particle level to the geo-mechanical responses caused by fluid injection and the resulting pressure build-up. This was achieved by employing the Discrete Element Method (DEM) to model the pressure development and the subsequent fracturing and/or cavity propagation. This technique represents the formation material as an assembly of discrete particles linked to each other through contacts. Numerical experiments were carried out on two sample materials. For the first instance, tests were carried out on a bulk material, representative of a generic intact rock, with the breakage of inter-particle bonds indicating the formation of cracks. The second series of tests was carried out on granular type materials such as sand, where particle separation signified cavity initiation and separation. It was observed from the DEM modelling results that the intact rock material showed a predominance of mode II fracturing at high fluid velocities. However, when the fluid velocity is reduced considerably the fracturing behaviour tended towards more of mode I. Also, records of the pressure development were taken from the numerical results and were used to monitor the fracturing events. The outcome of this study highlights important aspects of the hydraulic fracturing process especially at the particle–particle scale, and thus provides a strong basis for more exhaustive studies involving larger scale reservoir modelling and more complex fracturing scenarios.  相似文献   

12.
Sedimentary porous rocks can be used for long-term subsurface containment of CO2. Before injecting CO2 to sedimentary reservoirs, it is necessary to perform stability analysis of the reservoir and to estimate the maximum sustainable pore fluid pressures. In order to avoid the reservoir damage during the CO2 injection, the effective stresses in the reservoir should be evaluated. In this paper, numerical modeling techniques are used for the evaluation of stresses and deformations in a naturally fractured carbonate sedimentary reservoir. The developed numerical modeling scheme couples the behavior of the CO2 injection and the change in the geomechanical behavior of the sedimentary carbonate reservoir for a case study from Saudi Arabia. The present investigation extends the previous studies by considering the sorption-based deformation during the injection of the compressed CO2 fluid into the Arab-D naturally fractured carbonate reservoir. The change in permeability during the injection of CO2 is evaluated. The adopted CO2 injection scenario was shown to be within the safe maximum occupancy, and that the increase in the pore pressure does not result in the reservoir failure.  相似文献   

13.
The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO2 in deep brine formations. These comparisons have been discussed in nine areas: injection well integrity; abandoned well problems; buoyancy effects; multiphase flow effects; heterogeneity and flow channeling; multilayer isolation effects; caprock effectiveness and hydromechanics; site characterization and monitoring; effects of CO2 storage on groundwater resources. There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.  相似文献   

14.
Carbon dioxide (CO2) has been injected in the subsurface permeable formations as a means to cut atmospheric CO2 emissions and/or enhance oil recovery (EOR). It is important to constrain the boundaries of the CO2 plume in the target formation and/or other formations hosting the CO2 migrated from the target formation. Monitoring methods and technologies to assess the CO2 plume boundaries over time within a reservoir of interest are required. Previously introduced methods and technologies on pressure monitoring to detect the extent of the CO2 plume require at least two wells, i.e. pulser and observation wells. We introduce pressure transient technique requiring single well only. Single well pressure transient testing (drawdown/buildup/injection/falloff) is widely used to determine reservoir properties and wellbore conditions. Pressure diagnostic plots are used to identify different flow regimes and determine the reservoir/well characteristics. We propose a method to determine the plume extent for a constant rate pressure transient test at a single well outside the CO2 plume. Due to the significant contrast between mobility and storativity of the CO2 and native fluids (oil or brine), the CO2 boundary causes deviation in the pressure diagnostic response from that corresponding to previously identified heterogeneities. Using the superposition principle, we develop a relationship between the deviation time and the plume boundary. We demonstrate the applicability of the proposed method using numerically generated synthetic data corresponding to homogeneous, heterogeneous, and anisotropic cases to evaluate its potential and limitations. We discuss ways to identify and overcome the potential limitations for application of the method in the field.  相似文献   

15.
Deep saline aquifers still remain a significant option for the disposal of large amounts of CO2 from the atmosphere as a means of mitigating global climate change. The small scale Carbon Capture and Sequestration demonstration project in Ordos Basin, China, operated by the Shenhua Group, is the only one of its kind in Asia, to put the multilayer injection technology into practice. This paper aims at studying the influence of temperature, injection rate and horizontal boundary effects on CO2 plume transport in saline formation layers at different depths and thicknesses, focusing on the variations in CO2 gas saturation and mass fraction of dissolved CO2 in the formation of brine in the plume’s radial three-dimensional field around the injection point, and interlayer communication between the aquifer and its confining beds of relatively lower permeability. The study uses the ECO2N module of TOUGH2 to simulate flow and pressure configurations in response to small-scale CO2 injection into multilayer saline aquifers. The modelling domain involves a complex multilayer reservoir–caprock system, comprising of a sequence of sandstone aquifers and sealing units of mudstone and siltstone layers extending from the Permian Shanxi to the Upper Triassic Liujiagou formation systems in the Ordos Basin. Simulation results indicate that CO2 injected for storage into deep saline aquifers cause a significant pressure perturbation in the geological system that may require a long duration in the post-injection period to establish new pressure equilibrium. The multilayer simultaneous injection scheme exhibits mutual interference with the intervening sealing layers, especially when the injection layers are very close to each other and the corresponding sealing layers are thin. The study further reveals that injection rate and temperature are the most significant factors for determining the lateral and vertical extent that the CO2 plume reaches and which phase and amount will exist at a particular time during and after the injection. In general, a large number of factors may influence the CO2–water fluid flow system considering the complexity in the real geologic sequence and structural configurations. Therefore, optimization of a CO2 injection scheme still requires pursuance of further studies.  相似文献   

16.
Geological sequestration of CO2 is an option for significantly reducing emissions into the atmosphere. Various hydrocarbon companies in western Canada are currently injecting acid-gas (CO2 and H2S) into deep subsurface formations. At West Stoddart, in northeast British Columbia, acid-gas has been injected since 1998 at 1600 m depth into sandstones of the Triassic Halfway Formation, which forms a regional aquifer. A comprehensive subsurface characterization was conducted of the regional and local-scale geology, reservoir characteristics, mineralogy, in situ fluid properties, and hydrogeology. Preliminary results from geochemical and numerical multi-phase flow modelling suggest that the majority of the injected acid-gas will dissolve in the formation water and remain within a radius of a few kilometres of the injection well. The experience with the acid-gas injection at West Stoddart and other operations in the Alberta Basin has shown that the process of large-scale CO2-injection into deep aquifers is technically feasible.  相似文献   

17.
Integration of poromechanics and fracture mechanics plays an important role in understanding a series of thermal fracturing phenomena in subsurface porous media such as cold water flooding for enhanced oil recovery, produced‐water reinjection for waste disposal, cold water injection for geothermal energy extraction, and CO2 injection for geosequestration. Thermal fracturing modeling is important to prevent the potential risks when fractures propagate into undesired zones, and it involves the coupling of heat transfer, mass transport, and stress change as well as the fracture propagation. Analytical method, finite element method, and finite difference method as well as boundary element method have been used to perform the thermal fracturing modeling considering different degrees and combinations of coupling. In this paper, extended finite element method is employed for the thermal fracturing modeling in a fully coupled fashion with remeshing avoided, and the stabilized finite element method is employed to account for the convection‐dominated heat transfer in the fracturing process with numerical oscillation circumvented. With the thermal fracturing model, a hypothetical numerical experiment on cold water injection into a deep warm aquifer is conducted. Results show that parameters such as injection rate, injection temperature, aquifer stiffness, and permeability can affect the fracture development in different ways and extended finite element method and stabilized finite element method provide effective tools for thermal fracturing simulation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We present a contribution on the risk of hydraulic fracturing in CO2 geological storage using an analytical model of hydraulic fracturing in weak formations. The work is based on a Mohr–Coulomb dislocation model that is extended to account for material with fracture toughness. The complete slip process that is distributed around the crack tip is replaced by superdislocations that are placed in the effective centers. The analytical model enables the identification of a dominant parameter, which defines the regimes of brittle to ductile propagation and the limit at which a mode‐1 fracture cannot advance. We examine also how the corrosive effect of CO2 on rock strength may affect hydraulic fracture propagation. We found that a hydraulically induced vertical fracture from CO2 injection is more likely to propagate horizontally than vertically, remaining contained in the storage zone. The horizontal fracture propagation will have a positive effect on the injectivity and storage capacity of the formation. The containment in the vertical direction will mitigate the risk of fracturing and migration of CO2 to upper layers and back to the atmosphere. Although the corrosive effect of CO2 is expected to decrease the rock toughness and the resistance to fracturing, the overall decrease of rock strength promotes ductile behavior with the energy dissipated in plastic deformation and hence mitigates the mode‐1 fracture propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Structural traps like anticline structures are preferred for carbon dioxide sequestration as they limit lateral spreading of CO2 and thus provide localized storage. This study, therefore, assesses strategies for maximizing storage of CO2 using as hypothetical but realistic storage site a typical anticline structure in the North German sedimentary basin. Scenario simulations are performed to investigate the effects of well number, location, spacing and alignment, using fracture pressure and containment of CO2 within the anticline as constraining factors. Scenarios are ranked by stored CO2 mass, pressure increase due to injection and CO2 immobilized by dissolution or residual trapping. It is found that pressure overlap from different injectors influences CO2 migration considerably, limiting the storable amount to about 150 Mt, which represents half of the static capacity estimate.  相似文献   

20.
付雷  马鑫  刁玉杰  郑博文  郑长远  刘廷  邵炜 《中国地质》2022,49(5):1374-1384
【研究目的】 二氧化碳羽流地热系统(CPGS)在取热的同时可实现CO2地质封存,在碳达峰与碳中和背景下,CPGS碳封存的经济性是众多学者关注的要点。【研究方法】 以松辽盆地泉头组为例,采用数值模拟方法对比分析了注入压力、井间距与回注温度对热提取率的影响,在供暖情景下,计算了CPGS供暖效益与碳封存成本,并与常规水热型地热系统供暖效益进行了对比。【研究结果】 受携热介质转变与热突破影响,CPGS开采井温度呈现“降低-稳定-降低”的趋势,其中井间距对开采井温降影响显著,井间距越小开采井温降越明显;热提取率与回注压力呈现正相关性,与回注温度呈现负相关性,井间距对热提取率影响不显著;CPGS与常规水热型地热系统相比,采热量呈现“高-低-高”三个阶段,其中回注压力越小、回注温度与储层温度越接近,实现CPGS较水介质多采热能所需的时间越短。【结论】 仅考虑CO2价格与取热效益,供暖收益抵消部分碳封存成本后,井间距对CO2封存单位成本影响最为显著,井间距越小,CO2封存单位成本降低越迅速,在注采井间距300 m条件下,持续开采30 a后CO2封存单位成本可降至160元/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号