首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Under the background of global water cycle, theregional water cycle systems of the arid inland regionsof northwest China are characterized by the fact thatthe area is composed of various relatively independentinland river basins, each of which is a system of inter-related climate, hydrology, water resources, ecologyand environment. An inland river basin consists of amountain area and the plain and basin area in front ofthe mountains. The vertical landscape zonality of aninland river basin can …  相似文献   

2.
Evaporation and infiltration were compared for tropical rainforest and pasture, near to Manaus, Brazil from October 1990 to February 1992 using measurements of soil water storage over a depth of 2 m. The soil is a clayey oxisol of low water available capacity. In both of the dry seasons studied, the maximum change in soil water storage in the forest was 154 mm and in the pasture it was 131 and 112 mm. Similar behaviour of the soil water reservoir below forest and pasture in the wet season implied that differences in evaporation and drainage were small. In the dry season, soil water storage behaviour in the upper metre of the soil was similar but there were marked differences in the second metre. The pasture took up little water from below 1.5 m but the forest appeared to utilise all of the available water in the 2 m profile in both seasons.

The water balance of the 2 m profile showed that the pasture evaporation rate was equal to that of the forest until storage had decreased 80 mm from the maximum. There was then a decline in pasture evaporation rate to 1.2 mm day−1 as the storage decreased by a further 50 mm. In contrast, the forest uptake rate remained above 3.5 mm day−1 until storage had decreased 140 mm from the maximum (within 15 mm of the extraction limit), before declining abruptly to less than 1.5 mm day−1. There was strong evidence that the forest was able to abstract water from depths greater than 3.6 m.

Spatial variability of soil water storage was significantly greater beneath the pasture than beneath the forest, particularly following rainfall events in the dry season. This was largely the result of redistribution of rainfall as local surface runoff. There was no evidence of redistribution or runoff in the forest.  相似文献   


3.
Land use in Panama has changed dramatically with ongoing deforestation and conversion to cropland and cattle pastures, potentially altering the soil properties that drive the hydrological processes of infiltration and overland flow. We compared plot-scale overland flow generation between hillslopes in forested and actively cattle-grazed watersheds in Central Panama. Soil physical and hydraulic properties, soil moisture and overland flow data were measured along hillslopes of each land-use type. Soil characteristics and rainfall data were input into a simple, 1-D representative model, HYDRUS-1D, to simulate overland flow that we used to make inferences about overland flow response at forest and pasture sites. Runoff ratios (overland flow/rainfall) were generally higher at the pasture site, although no overall trends were observed between rainfall characteristics and runoff ratios across the two land uses at the plot scale. Saturated hydraulic conductivity (Ks) and bulk density were different between the forest and pasture sites (p < 10−4). Simulating overland flow in HYDRUS-1D produced more outputs similar to the overland flow recorded at the pasture site than the forest site. Results from our study indicate that, at the plot scale, Hortonian overland flow is the main driver for overland flow generation at the pasture site during storms with high-rainfall totals. We infer that the combination of a leaf litter layer and the activation of shallow preferential flow paths resulting in shallow saturation-excess overland flow are likely the main drivers for plot scale overland flow generation at the forest site. Results from this study contribute to the broader understanding of the delivery of freshwater to streams, which will become increasingly important in the tropics considering freshwater resource scarcity and changing storm intensities.  相似文献   

4.
With a detailed chemistry scheme for the middle atmosphere up to 70 km which has been added to the 3-D Karlsruhe simulation model of the middle atmosphere (KASIMA), the effects of coupling chemistry and dynamics through ozone are studied for the middle atmosphere. An uncoupled version using an ozone climatology for determining heating rates and a coupled version using on-line ozone are compared in a 10-month integration with meteorological analyses for the winter 1992/93 as the lower boundary condition. Both versions simulate the meteorological situation satisfactorily, but exhibit a too cold lower stratosphere. The on-line ozone differs from the climatological data between 20 and 40 km by exhibiting too high ozone values, whereas in the lower mesosphere the ozone values are too low. The coupled model version is stable and differs only above 40 km significantly from the uncoupled version. Direct heating effects are identified to cause most of the differences. The well-known negative correlation between temperature and ozone is reproduced in the model. As a result, the coupled version slightly approaches the climatological ozone field. Further feedback effects are studied by using the on-line ozone field as a basis for an artificial climatology. For non-disturbed ozone conditions realistic monthly and zonally averaged ozone data are sufficient to determine the heating rates for modelling the middle atmosphere.  相似文献   

5.
Sequential aerial photographs of a small headwater catchment in the Waiapu basin, East Coast Region, North Island, New Zealand, were interpreted to measure and analyse temporal changes in active area of gullies and gully complexes for a longer time span (1939–2003) and with higher temporal resolution compared to previous studies. We focus on the conditions leading to the development of gullies and gully complexes under pasture and forest by using topographic thresholds (slope–area relationships) of catchments for the initiation of gullies and gully complexes. In addition, the influence of two different lithologies as well as the occurrence of major rainfall events was related to gully activity. Twenty gullies and four gully complexes (occupying 62·5 ha or 12·5 per cent of the catchment area) occurred in the study catchment between 1939 and 2003. However, the majority of these were not active at all of the dates studied. Gullies developed in the sandstone‐dominated Tapuwaeroa Formation tended to attain their maximum size by 1957 with a mean catchment area of 2·1 ha. Gullies developed in mudstone of the Whangai Formation attained their maximum size in 1939 with a mean catchment area of 4·31 ha. Exceptions are gullies which developed into mass movement deposits or into an earth flow deposit as well as gullies developed under indigenous forest. Topographic threshold values for gullies under pasture and indigenous forest show that values for gullies under forest plot far above the threshold line of gullies under pasture, indicating that the topographical threshold for gully development under forest is higher compared to under pasture. A threshold value of 9·4 ha in catchment area is needed for the development of gully complexes under pasture, all located in the Whangai Formation and with the same orientation as the strike of the mudstones. Gully‐complex area and dominance of mass‐movement erosion increased with larger catchment area. A decreasing distance to the threshold line for gullies under pasture indicates a later development for gully complexes. No gully complexes developed under indigenous forest, indicating that the threshold value for gully‐complex development is higher than for gully complexes under pasture and was not reached in the study area. A model of shifting topographical threshold for gully development for a given catchment is developed which depends on land use. When a catchment has an indigenous forest cover the topographical threshold is very high. After conversion to pasture, threshold values decrease drastically. With the invasion of scrub, the threshold slowly increases and returns to a similar level to that under indigenous forest after reforestation. Development of gullies and gully complexes is a highly dynamic phenomenon, and phases of expansion and inactivity indicate that models describing only unidirectional advancing stages without periods of inactivity are not suitable. Therefore, this study adds more phases to models of gully and gully‐complex development in the East Coast Region. The threshold line for gully initiation under pasture and a value of 9·4 ha in catchment area for gully‐complex initiation permits one to predict which catchments, under similar environmental settings, develop gullies and gully complexes on a physical basis. This enables land managers to implement sustainable land‐use strategies to reduce erosion rates of gullies and gully complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
As a large and dynamic land‐use category, tropical secondary forests may affect climate, soils, and hydrology in a manner different from primary forests or agricultural areas. We investigated the saturated hydraulic conductivity Ksat of a Kandiudult under different land uses in Rondonia, Brazil. We measured Ksat at four depths (12·5, 20, 30 and 50 cm) under (a) primary forest, (b) a former banana–cacao plantation (SF1), and (c) an abandoned pasture (SF2). At 12·5 cm, all three land uses differ significantly (α = 0·1), but not at the 20 and 30 cm depths. At 50 cm, Ksat was significantly greater in the former pasture than in other land uses. Lateral subsurface flow is expected during intense rainfall (about 30 times per year) at 30 cm depth in SF1 and at 50 cm depth in the forest, whereas the relatively low permeability at shallow 12·5 cm in the SF2 may result not only in lateral subsurface flow, but also saturation overland flow. For modelling purposes, recovering systems seem to have Ksat values distinct from primary forest at shallow depths, whereas at deeper layers (>20 cm) they may be considered similar to forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
We derive a governing second-order acoustic wave equation in the time domain with a perfectly matched layer absorbing boundary condition for general inhomogeneous media. Besides, a new scheme to solve the perfectly matched layer equation for absorbing reflections from the model boundaries based on the rapid expansion method is proposed. The suggested scheme can be easily applied to a wide class of wave equations and numerical methods for seismic modelling. The absorbing boundary condition method is formulated based on the split perfectly matched layer method and we employ the rapid expansion method to solve the derived new perfectly matched layer equation. The use of the rapid expansion method allows us to extrapolate wavefields with a time step larger than the ones commonly used by traditional finite-difference schemes in a stable way and free of dispersion noise. Furthermore, in order to demonstrate the efficiency and applicability of the proposed perfectly matched layer scheme, numerical modelling examples are also presented. The numerical results obtained with the put forward perfectly matched layer scheme are compared with results from traditional attenuation absorbing boundary conditions and enlarged models as well. The analysis of the numerical results indicates that the proposed perfectly matched layer scheme is significantly effective and more efficient in absorbing spurious reflections from the model boundaries.  相似文献   

8.
9.
Our aim was to quantify the effects of forest plantation and management (clear cut or 30% partial harvest) in relation to pasture, on catchment discharge in southeast Rio Grande do Sul state, Brazil. A paired‐catchment approach was implemented in two regions (Eldorado do Sul and São Gabriel municipalities) where discharge was measured for 4 years at three catchments in each region, two of which were predominantly eucalypt plantation (mainly Eucalyptus saligna, rotation of approximately 7–9 years) with native forest and grass in streamside zones. The third catchment was covered with grazed pasture. Weather, soils, canopy interception, groundwater level, tree growth, and leaf area index were also measured. The 3‐PG process‐based forest productivity model was adapted to predict spatial daily plantation and pasture water balance including precipitation interception, soil evaporation, transpiration, soil moisture, drainage, discharge, and monthly plantation growth. The TOPMODEL framework was used to simulate water pools and fluxes in the catchments. Discharge was higher under pasture than pre‐harvesting plantation and increased for 1–2 years after complete plantation harvest; this change was less pronounced in the catchments under partial harvest. The ratio of discharge to precipitation before harvesting varied from 7% to 13% in the eucalypt catchments and 28% to 29% under pasture. The ratio increases to 23–24% after total harvest, and to 17% after partial harvesting. The ratio under pasture also increases during this period (to 32–44%) owing to increased precipitation. The baseflow, in relation to total discharge, varied from 28% to 62% under Eucalyptus and from 38% to 43% in the pasture catchments. Hence, eucalypt plantations in these regions can be expected to influence discharge regimes when compared with pasture land use, and modelling suggests that partial harvesting would moderate the magnitude of discharge variation compared with a full catchment plantation harvesting. The model efficiency coefficient (Nash–Sutcliffe model efficiency coefficient) varied from 0.665 to 0.799 for the total period of the study. Simulation of alternative harvesting scenarios suggested that at least 20% of the catchment planted area must be harvested to increase discharge. This model could be a useful practical tool in various plantation forestry contexts around the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Little is known about the association of soil pipe collapse features with soil properties or land use history. Three loess covered catchments in northern Mississippi, USA were characterized to investigate these relationships. Soil pipe collapses were characterized for their size, type feature and spatial location along with soil properties across the three catchments. Although mapped as the same soil, one of the catchments did not contain pipe collapse features while the other two had 29.4 and 15.4 pipe collapses per hectare. These loess soils contained fragipan layers that are suspected of perching water, thereby initiating the piping processes. Pipe collapses associated with subsurface flow paths were not always consistent with surface topography. The surface layer tended to be non‐erodible while layers below, even the upper fragipan layers, were susceptible to erosion by pipeflow. Soil properties of the lowest fragipan layer were highly variable but tended to prevent further downward erosion of soil pipes and thus formed a lower boundary for gullies. Middle to lower landscape positions in one of the piped catchments contained anthropic soils that were highly erodible. These anthropic soils were previously gullies that were filled‐in in the 1950s when forested areas, assumed to have been established when land was previously converted from crop to forest land, were converted to pasture. Three decades after this land use change from forest to pasture, pipe collapses became evident. In contrast, the adjacent catchment that does not exhibit pipe collapse features experienced severe sheet and rill erosion prior to the 1930s while in cotton production. The surface horizons above the lower fragipan layer were completely removed during this period, thus the top‐soil layer that tends to form a bridge above soil pipes in the more erodible subsoil layers was removed. This study showed that knowledge of soil characteristics or topography alone do not explain the distribution of soil pipe collapses as past land use can play a definitive role. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A 3-D velocity structure of the crust has been constructed for almost the entire Baltic Shield area from data of extensive deep seismic studies on the shield. The construction involved a revision of all primary data (record sections and observed traveltime curves) obtained in this region over 50 years of research. Comparative analysis of wave fields revealed that three reference reflectors traceable throughout the shield area are K1 (a boundary velocity of 6.4–6.5 km/s), K2 (~6.8 km/s), and the mantle surface M (8.0–8.2 km/s). The resulting 3-D velocity structure is represented in the form of structural maps of these surfaces and a velocity distribution scheme in the upper crust. Using this general basic model, seismic cross sections are constructed by means of mathematical modeling along all profiles. They showed that, in addition to the main layers and reflectors above the K1 boundary, a lower velocity layer is traceable almost everywhere and the majority of deep faults flatten out toward this layer. On the whole, lateral variations in the velocity structure of the crust are small up to a depth of 40 km. The variations are most significant in the M topography: its average depth being 40–45 km, two deep (down to 50–60 km) depressions exist in southern Finland and the Baltic region. The origin of this depression filled with high velocity (7.2–7.4 km/s) rocks remains unclear.  相似文献   

12.
Traditional Boussinesq or kinematic simulations of interflow (i.e., lateral subsurface flow) assume no leakage through the impeding layer and require a no-flow boundary condition at the ridge top. However, recent analyses of many interflow-producing landscapes indicate that leaky impeding layers are common, that most interflow percolates well before reaching the toe slope, and therefore, the downslope contributing length is shorter than the hillslope length. In watersheds characterised by perched interflow over a low conductivity layer through permeable topsoil, interflow with percolation may be modelled with a kinematic wave model using a mobile upslope boundary condition defining the hillslope portion contributing interflow to valleys. Here, we developed and applied a dynamic interflow model to simulate interflow using a downslope travel distance concept such that only the active contributing length is modelled at any time. The model defines a variable active area based on the depth of the perched layer, the topographic slope and the ratio of the hydraulic conductivity of topsoil to that of the impeding layer. It incorporates a two-layer soil moisture accounting water balance analysis, a pedo-transfer function, and percolation and evaporation routines to predict interflow rates in continuous and event-based scenarios. We tested the modelling concept on two sets of data (2-year dataset of rainfall observations for the continuous simulation and a multi-day irrigation experiment for the event simulation) from a 121-m-long open interflow collection trench on an experimental hillslope at the Savannah River Site, South Carolina. The continuous model simulation partially represented the observed interflow hydrograph and perched water depth in the experimental hillslope with correlation coefficients of 0.85 and 0.35, respectively. Model performance improved significantly at event-scale analysis. The modelling approach realistically represents interflow dynamics in hillslopes with leaky impeding layers and can be integrated into catchment-scale hydrology models for more detailed hillslope process modelling.  相似文献   

13.
森林冠层和森林边界层大涡模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
在采用各向异性湍流动能闭合方案和3阶Runge Kutta时间积分方案的大涡模式中,引入由森林冠层粗糙元造成的动量拖曳项、热量输入项和TKE耗散项,以模拟森林冠层和森林边界层的气象场. 通过中性和不稳定层结条件下不同叶面积指数算例的模拟分析及与已有观测结果的比较表明,本文所建大涡模式对森林冠层和森林边界层有较好的模拟效果. 进一步研究表明:不稳定层结条件下较稠密的森林冠层中特有的Kinking & Pairing湍涡结构与森林边界层中湍流的大涡运动相互作用,形成了森林冠层附近的温度斜坡型结构.  相似文献   

14.
Forest clearing and conversion to cattle pasture in the lowland Amazon region has been linked to soil compaction and increased soil water storage, which combine to diminish soil infiltration, enhance quick lateral flows and increase the stream flow response to precipitation. Quantifying the importance of quick surficial flow in response to this land use change requires identification of water sources within catchments that contribute to stream flow. Using an end member mixing analysis approach, potential contributing sources of stream flow were evaluated during an entire rainy season in a forest and a pasture watershed drained by ephemeral‐to‐intermittent streams in the south‐western Amazon. Water yield was 17% of precipitation in the pasture and 0·8% of precipitation in the forest. During the early rainy season, throughfall, groundwater, and soil water contributed 79%, 18%, and 3%, respectively, to total forest stream flow. Over the entire rainy season, throughfall, groundwater, and shallow soil water provided 57%, 24%, and 19%, respectively, of stream flow. In the pasture watershed, overland flow dominated stream flow both in the early (67%) and late (57%) rainy season, with a mean contribution of 60% overland flow, 35% groundwater, and 5% soil water. The uncertainty associated with those estimates was studied using a Monte Carlo approach. In addition to large changes in total surface flow, marked differences were found in the proportions of total stream flow in the second half of the rainy season between the forest and pasture watershed. These results suggest that (1) there is great potential for alteration of the hydrological budgets of larger watersheds as the proportion of deforested land in the Amazon increases, and (2) as more rainfall is diverted into fast flowpaths to streams in established pastures, the potential to deliver water with higher solute concentrations generated by erosion or by bypassing sites of solute removal increases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Over the past decade, there have been numerous receiver function studies directed at imaging the lithosphere-asthenosphere boundary (LAB). Although it is generally accepted that receiver function phases observed in these studies are derived from physical mode conversions at depth within the lithosphere-asthenosphere transition, it is still debatable as to whether these phases are directly indicative of the LAB. This is because interpretation of receiver function LAB signals relies on understanding the elastic characteristics of the Earth??s outer thermal boundary layer. The main issues for receiver function imaging are the sharpness of the elastic material property transition and, more importantly, what specifically are the material gradients. To test the various transition models, a forward modelling approach is required that allows accurate waveform synthetics for a range of discontinuous and continuous gradients in anisotropic, elastic media. We present a derivation of the reflection and transmission response for continuous one-dimensional (1-D) gradients in generally anisotropic elastic media. We evaluate the influence of 1-D isotropic and anisotropic elastic gradients on the seismic waveform by comparing numerical results of models for discontinuous and continuous transitions. The results indicate that discontinuous representations using layers each with uniform parameters and with thicknesses on the order of approximately 1/3 to 1/8 of the dominant seismic wavelength can be used to accurately model P-to-S and S-to-P mode conversions due to continuous transitions of both isotropic and anisotropic elastic properties. From a practical point of view, when comparing synthetic modelling with observation, this constraint can be relaxed further. The presence of signal noise and/or the result of receiver function stacking techniques will likely obscure these subtle waveform e ff ects. Hence this study suggests that accurate synthetic waveforms for LAB transitions can be modelled with discontinuous gradient representations using a reasonable number of discrete transition layers with layer thicknesses no greater than 1/2 to 1/3 the dominant seismic wavelength.  相似文献   

16.
D. W. Crowder  P. Diplas   《Journal of Hydrology》2000,230(3-4):172-191
Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modeling practices consider relatively long channel sections with their bathymetry represented in terms of large, macro-scale, topographic features. Meso-scale topographic features, such as boulders, root-wads and other obstructions are typically not considered in the modeling process. Instead, the overall effects of these flow obstructions are captured through increased values in the channel roughness parameters. Such an approach to 2-D modeling allows one to accurately predict average depth and velocity values; however, it is not capable of providing any information about the flow patterns in the vicinity of these obstructions. Biologists though have known that such meso-scale features and the complex velocity patterns generated by their presence, play an important role in the ecology of streams, and thus cannot be ignored. It is therefore evident that there is a need to develop better tools, capable of modeling flow characteristics at scales of ecological importance. The purpose of this study is to expand the utility of 2-D hydraulic models to capture these flow features that are critical for characterizing stream habitat conditions.

There exists a paucity of research addressing what types of topographic features should be included in 2-D model studies and to what extent a boulder or series of exposed boulders can influence predicted flow conditions and traditional useable habitat computations. Moreover, little research has been performed to evaluate the impact mesh refinement has on model results in natural streams. Numerical simulations, based on a natural river channel containing several large boulders, indicate that explicitly modeling local obstructions/boulders can significantly impact predicted flow parameters. The presence of these obstructions create velocity gradients, velocity shelters, transverse flows and other ecologically important flow features that are not reproduced when their geometry is not incorporated into the hydraulic model. Sensitivity analyses show that reducing element sizes in the vicinity of obstructions and banks is crucial in modeling the spatial flow patterns created by meso-scale topographic features. This information, combined with similar data obtained in future studies, can provide guidelines for the placement of fishrocks and other structures often used in stream restoration projects as well as determining what types of meso-scale topographic features might need to be incorporated into habitat suitability studies. Such information may also ultimately allow new spatial habitat metrics to be developed.  相似文献   


17.
Field observations in the Oman ophiolite and petrological data are used to constrain a model of melt segregation at the top of the mantle beneath an oceanic spreading centre. Foliations and lineations in outcrops of mantle-derived peridotites oriented at high angle relative to the crust–mantle boundary have been interpreted as the footprint of a former axial asthenospheric convective upwelling several kilometers in cross-section that reached Moho levels. Basaltic melts migrating through this upwelling reacted with their host harzburgites and suffered fractional crystallization. The mantle–crust transition zone at the top of the upwelling is characterized by an very thick (about 400 m) dunite layer whose detailed structure and composition point to the development by compaction of a former “mantle mush”. The more important structures (in terms of volume of crystallization products) found in the underlying harzburgites are dunitic–troctolitic horizons a few meters thick and of lateral extent reaching 1 km and more. They crystallized at high temperature (>1190 °C) from melts similar to mid-ocean ridge basalts (MORB). These are called “sills” because they are sub-parallel to the crust–mantle boundary, but they can present a moderate dip (15° to 20° at most) relative to this paleo-horizontal surface. These observations have motivated the modelling of melt segregation by compaction within the crystallization domain inside the top convective boundary layer of the mantle upwelling. Two original inputs to the modelling are considered here: (i) the slope of the iso-curves of melt concentration due to the progressive cooling of the mantle in the boundary layer away from the axis of the rising convective flow; (ii) the reduction in permeability caused by the crystallization of the inter-granular melt. Modelling shows that a unique condition is required to generate the troctolite sills and the thick dunite layer nested at the top of the Maqsad diapir: namely a dramatic drop of the interstitial melt concentration at the top of the mantle. Besides, the model developed here allows to scale the time, volume and velocity of the melt segregation.  相似文献   

18.
The paper presents results obtained in experiments on a horizontal layer heated from below in its central part and cooled from above; the layer models the oceanic asthenosphere. Flow velocity and temperature profiles are measured and the flow structure under boundary layer conditions is determined (at Rayleigh numbers Ra > 5 × 105). The flow in the core of a plane horizontal layer heated laterally and cooled from above develops under conditions of a constant temperature gradient averaged over the layer thickness. The flow core is modeled by a horizontal layer with a moving upper boundary and with adiabatic bounding surfaces under conditions of a constant horizontal gradient of temperature. Exact solutions of free convection equations are found for this model in the Boussinesq approximation. Model results are compared with experimental data. Temperature and flow velocity ranges are determined for the boundary layer regime. Based on the experimental flow velocity profiles, an expression is found for the flow velocity profile in a horizontal layer with a mobile upper boundary heated laterally and cooled from above. Free convection velocity profiles are obtained for the asthenosphere beneath a mid-ocean ridge (MOR) with a mobile lithosphere. An expression is obtained for the tangential stress at the top of the asthenosphere beneath an MOR and the total friction force produced by the asthenospheric flow at the asthenosphere-lithosphere boundary is determined.  相似文献   

19.
According to the boundary layer observations of three stations (Garze, Damxung and Qamdu) and relevant earth satellite, radiosonde and surface observations during the intensive observational period (IOP) of the second Tibetan (Qinghai-Xizang) Plateau Experiment of atmospheric science (TIPEX), the land-air physical process and dynamic model on the Tibetan Plateau were comprehensively analyzed in this study. The dynamic characteristics of boundary layer and the rules of turbulent motion on the plateau were illustrated. The characteristics of distributions of wind speed and direction with mutiple-layer structure and deep convective mixed layer on the plateau, the strong buoyancy effect in turbulent motion on the plateau on which the air density is obviously smaller than on the plain, and the Ekman spiral and its dynamic pump effect of the plateau deep boundary layer have been found. The local static distribution of water vapor and the horizontal advection of water vapor in the plateau boundary layer were studied. The abnomal thermodynamic structure on the plateau surface and boundary layer, including the plateau strong radiation phenomenon and strong heating source characteristics of the middle plateau, was also analyzed. The authors synthesized the above dynamic and thermodynamic structures of both surface and boundary layers on the plateau and posed the comprehensive physical model of the turbulence and convective mixture mechanism on the plateau boundary layer. The characteristics of formation, development and movement for convective cloud cluster over the plateau influencing floods in the Yangtze River area of China were studied. The conceptual model of dynamic and thermodynamic structures of turbulent motion and convective plume related to the frequent occurrence of "pop-corn-like" cloud system is given as well.  相似文献   

20.
Forests play an important role in the global carbon cycle and have a potential impact on global climatic change.Monitoring forest biomass is of considerable importance in understanding the hydrological cycle.Because of the problem of dense forest cover,no reliable method with which to retrieve soil moisture in forest areas from the microwave emission signature has been established.All of these issues relate to the microwave emissivity and transmissivity characteristics of a forest.The microwave emission contribution received by a sensor above a forest canopy comes from both the soil surface and the vegetation layer.To analyze the relationship of forest biomass and forest emission and transmissivity,a high-order emission model,the matrix-doubling model,which consists of both soil and vegetation models,was developed and then validated for a young deciduous forest stand in a field experiment.To simulate the emissivity and transmissivity of a deciduous forest in the L and X bands using the matrix-doubling model,the parameters of components of deciduous trees when the leaf area index varies from 1 to10 were generated by an L-system and a forest growth model.The emissivity and transmissivity of a forest and the relationships of these parameters to forest biomass are presented and analyzed in this paper.Emissivity in the L band when the leaf area index is less than 6 and at viewing angles less than 40°,and transmissivity in the L band are the most sensitive parameters in deciduous forest biomass estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号