首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optimal orbits for Mars atmosphere remote sensing   总被引:1,自引:0,他引:1  
Most of the spacecrafts currently around Mars (or planned to reach Mars in the near future) use Sun-synchronous or near-polar orbits. Such orbits offer a very poor sampling of the diurnal cycle. Yet, sampling the diurnal cycle is of key importance to study Mars meteorology and climate. A comprehensive remote sensing data set should have been obtained by the end of the MRO mission, launched in 2005. For later windows, time-varying phenomena should be given the highest priority for remote sensing investigations. We present possible orbits for such missions which provide a rich spatial and temporal sampling with a relatively short repeat cycle (50 sols). After computation and determination of these orbits, said “optimal orbits”, we illustrate our results by tables of sampling and comparison with other orbits.  相似文献   

2.
By linear perturbation theory, a sensitivity study is presented to calculate the contribution of the Mars gravity field to the orbital perturbations in velocity for spacecrafts in both low eccentricity Mars orbits and high eccentricity orbits(HEOs). In order to improve the solution of some low degree/order gravity coefficients, a method of choosing an appropriate semimajor axis is often used to calculate an expected orbital resonance, which will significantly amplify the magnitude of the position and velocity perturbations produced by certain gravity coefficients. We can then assess to what degree/order gravity coefficients can be recovered from the tracking data of the spacecraft. However, this existing method can only be applied to a low eccentricity orbit, and is not valid for an HEO. A new approach to choosing an appropriate semimajor axis is proposed here to analyze an orbital resonance. This approach can be applied to both low eccentricity orbits and HEOs. This small adjustment in the semimajor axis can improve the precision of gravity field coefficients and does not affect other scientific objectives.  相似文献   

3.
An indirect optimization procedure is applied to find the mission opportunities for a manned or round-trip mission to Mars. Both the conjunction-class and opposition-class high-thrust trajectories are considered, taking into account simple legs (with only departure and arrival impulses), three-impulse legs (departure, midcourse and arrival impulses) and flyby legs, where the non-propelled flyby of the planet Venus is used instead of the midcourse impulse to reduce the propellant consumption. The absolute positions of all the relevant planets repeat almost perfectly after 32 years: therefore, only the mission opportunities in a 32-year syzygistic cycle are analyzed. The two-body problem formulation is sufficient for preliminary analyses of interplanetary missions and the trajectory is approximated by heliocentric conic orbits passing through the centres of the planets. The mission opportunities correspond to the local minima of the characteristic velocity, that is, the sum of the actual velocity changes obtained by expending the propellant. Numerical results are presented to show that the same mathematical approach can be applied to different classes of missions, to emphasize the indications suggested by Pontryagin's Maximum Principle, to point out some periodicities in the solutions and to discuss the problem of providing initial guesses at the solutions.  相似文献   

4.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

5.
On Earth, measurements of the ratios of stable carbon isotopes have provided much information about geological and biological processes. For example, fractionation of carbon occurs in biotic processes and the retention of a distinctive 2-4% contrast in 13C/12C between organic carbon and carbonates in rocks as old as 3.8 billion years constitutes some of the firmest evidence for the antiquity of life on the Earth. We have developed a prototype tunable diode Laser spectrometer which demonstrates the feasibility of making accurate in situ isotopic ratio measurements on Mars. This miniaturized instrument, with an optical path length of 10 cm, should be capable of making accurate 13C/12C and 15N/14N measurements. Gas samples for measurement are to be produced by pyrolysis using soil samples as small as 50 mg. Measurements of 13C/12C, 18O/16O and 15N/14N have been made to a precision of better than 0.1% and various other isotopes are feasible. This laser technique, which relies on the extremely narrow emission linewidth of tunable diode lasers (<0.001 cm(-1)) has favorable features in comparison to mass spectrometry, the standard method of accurate isotopic ratio measurement. The miniature instrument could be ready to deploy on the 2003 or other Mars lander missions.  相似文献   

6.
It is shown that the orbits of minor bodies of the Mars family can be formed as a result of single close encounters with the inner planets (Venus -Mars) of minor bodies moving along orbits with the aphelion distanceq' 4.26 AU. The Laplace method of the unperturbed two-body problem was applied.  相似文献   

7.
《Planetary and Space Science》1999,47(3-4):441-450
The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2–45 μm. The instrument, previously included in the payload of the failed mission Mars ′96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.  相似文献   

8.
9.
Mars is the only extraterrestrial body which could host primitive lifeforms and also has the potential to host a human base in the near future. Towards fulfilling these objectives, several remote sensing missions and rover based missions have been sent to Mars. Still, confirmation of existing or extinct life on this planet in any form has not been achieved and possibly human missions at selected sites in the future are the key to addressing this problem. Here, we have used remote sensing data from Mars Reconnaissance Orbiter(MRO; NASA), Mars Global Surveyor(MGS; NASA), Mars Odyssey(NASA) and Mars Express(MEX; ESA) to devise an exploration strategy for one such area known as Hebrus Valles, which is a potential site for human exploration of the surface of Mars. A geological context map of the Hebrus Valles and Hephaestus Fossae region has been prepared and a candidate landing site has been proposed in the Hebrus Valles region. Suitable rover paths have been worked out from the proposed landing site for harnessing the science and resource potential of the region. The proposed landing site is located in the equatorial region at(20?40′N, 126?23′E) and due to its proximity to the Potential Subsurface Access Candidates(PSACs) in the region, such as sinkholes and skylights and also other resources such as crater ejecta, silicate material and fluvial channels, the site is appropriate for exploration of the region.  相似文献   

10.
11.
Australia is an ideal testing ground in preparation for the robotic and human exploration of Mars. Numerous sites with landforms or processes analogous to those on Mars are present and the deserts of central Australia provide a range of locations for free-ranging Mars analogue mission simulations. The latest developments in testing technologies and strategies for exploration in Australian Mars analogues are reviewed. These include trials of analogue space suits based on mechanical counter pressure technology and the development of an analogue, crewed, pressurized rover for long-range exploration. Field science activities and instrumentation testing relevant to robotic and future crewed missions are discussed. Australian-led human factors research undertaken during expeditions to Mars analogue research stations and expeditions to Antarctica are also reviewed. Education and public outreach activities related to Mars analogue research in Australia are also detailed.  相似文献   

12.
The knowledge of Martian geology has increased enormously in the last 40 yr. Several missions orbiting or roving Mars have revolutionized our understanding of its evolution and geological features, which in several ways are similar to Earth, but are extremely different in many respects. The impressive dichotomy between the two Martian hemispheres is most likely linked to its impact cratering history, rather than internal dynamics such as on Earth. Mars' volcanism has been extensive, very long-lived and rather constant in its setting. Water was available in large quantities in the distant past of Mars, when a magnetic field and more vigorous tectonics were active.Exogenic forces have been shaping Martian landscapes and have led to a plethora of landscapes shaped by wind, water and ice. Mars' dynamical behavior continues, with its climatic variation affecting climate and geology until very recent times. This paper tries to summarize major highlights in Mars' Geology, and points to deeper and more extensive sources of important scientific contributions and future exploration.  相似文献   

13.
The state and future of Mars polar science and exploration.   总被引:1,自引:0,他引:1  
As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of approximately 10(6) km2 and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to be comparatively young--preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past approximately 10(5)-10(8) years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet--documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason--providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding.  相似文献   

14.
Mars-96 mission: Mars exploration with the use of penetrators   总被引:1,自引:0,他引:1  
Within the frames of the Mars-96 Mission the penetrators were first developed for the investigation of the chemical composition and physical properties of the Martian rocks, research into the internal structure of the planet, studying of its surface, atmosphere and climate.The paper briefly describes the penetrator design, the process of its landing and penetration into the Martian surface, items included in the complex scientific instrumentation and their specifications, and principal scientific tasks which can be realized with the use of penetrators.  相似文献   

15.
The determination of the ephemeris of the Martian moons has benefited from observations of their plane-of-sky positions derived from images taken by cameras onboard spacecraft orbiting Mars. Images obtained by the Super Resolution Camera (SRC) onboard Mars Express (MEX) have been used to derive moon positions relative to Mars on the basis of a fit of a complete dynamical model of their motion around Mars. Since, these positions are computed from the relative position of the spacecraft when the images are taken, those positions need to be known as accurately as possible. An accurate MEX orbit is obtained by fitting two years of tracking data of the Mars Express Radio Science (MaRS) experiment onboard MEX. The average accuracy of the orbits has been estimated to be around 20–25 m. From these orbits, we have re-derived the positions of Phobos and Deimos at the epoch of the SRC observations and compared them with the positions derived by using the MEX orbits provided by the ESOC navigation team. After fit of the orbital model of Phobos and Deimos, the gain in precision in the Phobos position is roughly 30 m, corresponding to the estimated gain of accuracy of the MEX orbits. A new solution of the GM of the Martian moons has also been obtained from the accurate MEX orbits, which is consistent with previous solutions and, for Phobos, is more precise than the solution from the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) tracking data. It will be further improved with data from MEX-Phobos closer encounters (at a distance less than 300 km). This study also demonstrates the advantage of combining observations of the moon positions from a spacecraft and from the Earth to assess the real accuracy of the spacecraft orbit. In turn, the natural satellite ephemerides can be improved and participate to a better knowledge of the origin and evolution of the Martian moons.  相似文献   

16.
The exploitation of ground penetrating radar in Mars subsurface exploration is becoming assessed in remote sensing observations and is of timely interest for high resolution in situ prospecting of the first meters of the underground.In this framework, we deal with a novel processing approach based on microwave tomography. Aiming to achieve accurate and reliable “images” of the investigated subsurface region in order to detect, localize and possibly determine the extent and the geometrical features of the embedded layers while reducing at the minimum possible the “interpretation” of the diagnostics result.The feasibility of the microwave tomographic approach has been tested in realistic cases dealing with conditions analogue to the Mars subsurface ones. In particular, we will present the tomographic reconstruction results achieved by experimental data collected in a field survey at Svalbard Islands (Norway) with a time-domain GPR.  相似文献   

17.
We present the Messinian evaporite suite (Mediterranean region) and the Solfatara hydrothermal system (Phlegraean Fields volcanic province, Italy), discuss their implications for understanding the origin of sulfates on Mars and show preliminary sets of VNIR laboratory and in situ reflectance spectra of rocks from these geologic systems. The choice was based on a number of evidence relative to Mars: (1) the chemistry of the Martian sulfates, suggesting fluid interactions with possibly alkali-basaltic rocks and/or regolith; (2) close range evidence of sulfates within sedimentary formations on Mars; (3) sulfate spectral signatures associated to large-scale layered patterns interpreted as thick depositional systems on Mars. The Messinian evaporites comprise three units: primary shallow-water sulfates (primary lower gypsum: PLG), shallow- to deep-water mixed sulfates and clastic terrigenous deposits (resedimented lower gypsum: RLG), and shallow-water associations of primary sulfates and clastic fluvio-deltaic deposits (upper evaporites: UE). The onset of the Messinian evaporites records the transition to negative hydrologic budget conditions associated with the Messinian Salinity Crisis, which affected the entire Mediterranean basin and lasted about 640 kyr. The Solfatara is a still evolving hydrothermal system that provides epithermal deposits precipitated from the interaction of fluids and trachybasaltic to phonolitic rocks. Thermal waters include alkali-chloride, alkali-carbonate and alkali-sulfate endmembers.The wide spectrum of sedimentary gypsum facies within the Messinian formation includes some of the depositional environments hitherto identified on Mars and others not found on Mars. The PLG unit includes facies associations correlated over long distances, that could be a possible analog of the stratified rock units exposed from Arabia Terra at least as far as Valles Marineris. The facies cycles within the UE unit can be compared to the sequences of strata observed in craters such as Holden and Eberswalden. The UE unit records paleoenvironmental changes which are ultimately controlled by terrestrial climatic variations. They can be considered as a reliable climatic proxy and may be useful for the reconstruction of climatic events on Mars. The intermediate Messinian RLG unit has not, at present, a well-defined depositional counterpart on Mars, although there are some similarities with the northern lowlands and Vastitas Borealis Formation. The dramatic variation of hydrologic budget conditions at the onset of the Messinian evaporites may provide criteria for the interpretation of similar variations on Mars.The volcanic rocks at the Solfatara bear some similarities with the “alkaline magmatic province” observed at the Gusev crater on Mars, and the assemblages of hydrothermal phases resulting from the Solfatara's parent rocks could be analogues for processes involving Gusev-type rocks.The Messinian sulfates have a prevalent Ca-sulfatic composition and wide textural variability. Preliminary laboratory reflectance spectra of rock samples in the VNIR region reveal the signature of sulfates and mixtures of several Fe-bearing phases. At the Solfatara, in situ reflectance measurements of epithermal minerals close to active fumaroles showed the presence of Fe-bearing sulfates, hematite, Al- and K-sulfates and abundant amorphous fraction. XRD analysis supported this interpretation.The range of depositional facies observed in the Messinian units and the variety of minerals detected in the Solfatara will be useful for the interpretation of close range data of Mars. The spectral characterization at various scales of the Messinian sedimentary facies and the Solfatara hydrothermal minerals will both help in the exploration of Mars from orbit and with close range inspection.  相似文献   

18.
Acidic waters of the Rio Tinto, southwestern Spain, evaporate seasonally, precipitating a variety of iron sulfide and oxide minerals. Schwertmannite and nanophase goethite form thin laminae on biological and detrital grain surfaces, replicating, among other things, the morphologies of insect cuticle, plant tissues, fungi, algae, and bacteria. Intergrain cements also incorporate bacterial cells and filaments. Other sulfate minerals precipitated in Rio Tinto environments are transient and contribute little to short-term preservation. Because the Rio Tinto has been cutting its current valley for several million years, terrace deposits provide a window on longer term fossil preservation. Early and later diagenesis are recorded in terrace deposits formed about one thousand and two million years ago, respectively. The sedimentary structures and mineralogies of these deposits suggest that they formed under physical and chemical conditions comparable to those of modern Rio Tinto sediments. The terrace deposits show quantitative loss of sulfate minerals, increasing crystallinity of goethite and, in the older terrace, replacement of goethite by hematite. Fossils formed originally by schwertmannite and nanophase goethite replication persist through diagenesis, preserving a long term record of local biological diversity. Fossil preservation by iron oxides in the acidic environment of Rio Tinto suggests that if life was present when sedimentary rocks formed at Meridiani Planum, Mars, precipitated minerals could record their presence.  相似文献   

19.
Non-Keplerian orbits for electric sails   总被引:1,自引:0,他引:1  
An electric sail is capable of guaranteeing the fulfilment of a class of trajectories that would be otherwise unfeasible through conventional propulsion systems. In particular, the aim of this paper is to analyze the electric sail capabilities of generating a class of displaced non-Keplerian orbits, useful for the observation of the Sun’s polar regions. These orbits are characterized through their physical parameters (orbital period and solar distance) and the spacecraft propulsion capabilities. A comparison with a solar sail is made to highlight which of the two systems is more convenient for a given mission scenario. The optimal (minimum time) transfer trajectories towards the displaced orbits are found with an indirect approach.  相似文献   

20.
Hamiltonian approximations generally result from series expansions and truncations at different orders. But other ways are possible, and some of them, as the one this paper tries to explore, can speed up Hamiltonian computations and prove useful for studies involving extensive developments, for example solar system bodies with complex dynamics or requiring accurate ephemeris for observational purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号