首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We repeat the directional spherical real Morlet wavelet analysis, used previously to detect non-Gaussianity in the Wilkinson Microwave Anisotropy Probe ( WMAP ) 1- and 3-yr data, on the WMAP 5-yr data. The non-Gaussian signal detected previously is present in the 5-yr data at a slightly increased statistical significance of approximately 99 per cent. Localized regions that contribute most strongly to the non-Gaussian signal are found to be very similar to those detected in the previous releases of the WMAP data. When the localized regions detected in the 5-yr data are excluded from the analysis, the non-Gaussian signal is eliminated.  相似文献   

2.
Many of the current anomalies reported in the WMAP text ( WMAP ) one-year data disappear after 'correcting' for the best-fitting embedded Bianchi type VII h component, albeit assuming no dark energy component. We investigate the effect of this Bianchi correction on the detections of non-Gaussianity in the WMAP data that we previously made using directional spherical wavelets. We confirm that the deviations from Gaussianity in the kurtosis of spherical Mexican hat wavelet coefficients are eliminated once the data are corrected for the Bianchi component, as previously discovered by Jaffe et al. This is due to the reduction of the cold spot at Galactic coordinates  ( l , b ) = (209°, −57°)  , which Cruz et al. claimed to be the sole source of non-Gaussianity introduced in the kurtosis. Our previous detections of non-Gaussianity observed in the skewness of spherical wavelet coefficients are not reduced by the Bianchi correction. Indeed, the most significant detection of non-Gaussianity made with the spherical real Morlet wavelet at a significant level of 98.4 per cent remains (using a very conservative method to estimate the significance). Furthermore, we perform preliminary tests to determine if foregrounds or systematics are the source of this non-Gaussian signal, concluding that it is unlikely that these factors are responsible. We make our code to simulate Bianchi-induced temperature fluctuations publicly available.  相似文献   

3.
We investigate the Gaussianity of the 4-yr COBE DMR data (in HEALPix pixelization) using an analysis based on spherical Haar wavelets. We use all the pixels lying outside the Galactic cut and compute the skewness, kurtosis and scale–scale correlation spectra for the wavelet coefficients at each scale. We also take into account the sensitivity of the method to the orientation of the input signal. We find a detection of non-Gaussianity at >99 per cent level in just one of our statistics. Taking into account the total number of statistics computed, we estimate that the probability of obtaining such a detection by chance for an underlying Gaussian field is 0.69. Therefore, we conclude that the spherical wavelet technique shows no strong evidence of non-Gaussianity in the COBE DMR data.  相似文献   

4.
A directional spherical wavelet analysis is performed to examine the Gaussianity of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 1-yr data. Such an analysis is facilitated by the introduction of a fast directional continuous spherical wavelet transform. The directional nature of the analysis allows us to probe orientated structure in the data. Significant deviations from Gaussianity are detected in the skewness and kurtosis of spherical elliptical Mexican hat and real Morlet wavelet coefficients for both the WMAP and Tegmark, de Oliveira-Costa & Hamilton foreground-removed maps. The previous non-Gaussianity detection made by Vielva et al. using the spherical symmetric Mexican hat wavelet is confirmed, although their detection at the 99.9 per cent significance level is only made at the 95.3 per cent significance level using our most conservative statistical test. Furthermore, deviations from Gaussianity in the skewness of spherical real Morlet wavelet coefficients on a wavelet scale of 550 arcmin (corresponding to an effective global size on the sky of ∼26° and an internal size of ∼3°) at an azimuthal orientation of 72°, are made at the 98.3 per cent significance level, using the same conservative method. The wavelet analysis inherently allows us to localize on the sky those regions that introduce skewness and those that introduce kurtosis. Preliminary noise analysis indicates that these detected deviation regions are not atypical and have average noise dispersion. Further analysis is required to ascertain whether these detected regions correspond to secondary or instrumental effects, or whether in fact the non-Gaussianity detected is due to intrinsic primordial fluctuations in the cosmic microwave background.  相似文献   

5.
6.
7.
8.
Topological defect theories lead to non-Gaussian features on maps of fluctuations of the cosmic microwave background radiation (CMBR), which enable us to distinguish them from maps predicted by standard inflationary models. We have recently presented a maximum entropy method (MEM) which simultaneously deconvolves interferometer maps of CMBR fluctuations, and separates out foreground contaminants. By applying this method to simulated observations using a realistic ground-based interferometer, we demonstrate that it is possible to recover the prominent hotspots in the CMBR maps which delineate individual defects, even in the presence of a significant Galactic foreground.  相似文献   

9.
10.
11.
12.
We present a Gaussianity analysis of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-yr cosmic microwave background (CMB) temperature anisotropy data maps. We use several third-order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter f nl using well-motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q , V , and W frequency bands. We use the KQ 75 mask recommended by the WMAP team which masks out 28 per cent of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients, we compute the third order estimators which are used to perform a  χ2  analysis. The  χ2  statistic is used to test the Gaussianity of the WMAP data as well as to constrain the f nl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the f nl parameter is constrained to  −8 < f nl < +111  at 95 per cent confidence level (CL) for the combined   V + W   map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of  Δ f nl= 3 ± 5  in the   V + W   map. Our results are very similar to those obtained by the WMAP team using the bispectrum.  相似文献   

13.
14.
15.
We investigate the use of wavelet transforms in detecting and characterizing non-Gaussian structure in maps of the cosmic microwave background (CMB). We apply the method to simulated maps of the KaiserStebbins effect resulting from cosmic strings, on to which Gaussian signals of varying amplitudes are superposed. We find that the method significantly outperforms standard techniques based on measuring the moments of the pixel temperature distribution. We also compare the results with those obtained using techniques based on Minkowski functionals, and we again find the wavelet method to be superior. In particular, using the wavelet technique, we find that it is possible to detect non-Gaussianity even in the presence of a superposed Gaussian signal with 3 times the rms amplitude of the original cosmic string map. We also find that the wavelet technique is useful in characterizing the angular scales at which the non-Gaussian signal occurs.  相似文献   

16.
17.
A maximum entropy method (MEM) is presented for separating the emission resulting from different foreground components from simulated satellite observations of the cosmic microwave background radiation (CMBR). In particular, the method is applied to simulated observations by the proposed Planck Surveyor satellite. The simulations, performed by Bouchet &38; Gispert, include emission from the CMBR and the kinetic and thermal Sunyaev–Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free–free and synchrotron emission. We find that the MEM technique performs well and produces faithful reconstructions of the main input components. The method is also compared with traditional Wiener filtering and is shown to produce consistently better results, particularly in the recovery of the thermal SZ effect.  相似文献   

18.
An algorithm is proposed for denoising the signal induced by cosmic strings in the cosmic microwave background. A Bayesian approach is taken, based on modelling the string signal in the wavelet domain with generalized Gaussian distributions. Good performance of the algorithm is demonstrated by simulated experiments at arcminute resolution under noise conditions including primary and secondary cosmic microwave background anisotropies, as well as instrumental noise.  相似文献   

19.
20.
We present the first tests of a new method, the correlated component analysis (CCA) based on second-order statistics, to estimate the mixing matrix, a key ingredient to separate astrophysical foregrounds superimposed to the Cosmic Microwave Background (CMB). In the present application, the mixing matrix is parametrized in terms of the spectral indices of Galactic synchrotron and thermal dust emissions, while the free–free spectral index is prescribed by basic physics, and is thus assumed to be known. We consider simulated observations of the microwave sky with angular resolution and white stationary noise at the nominal levels for the Planck satellite, and realistic foreground emissions, with a position-dependent synchrotron spectral index. We work with two sets of Planck frequency channels: the low-frequency set, from 30 to 143 GHz, complemented with the Haslam 408 MHz map, and the high-frequency set, from 217 to 545 GHz. The concentration of intense free–free emission on the Galactic plane introduces a steep dependence of the spectral index of the global Galactic emission with Galactic latitude, close to the Galactic equator. This feature makes difficult for the CCA to recover the synchrotron spectral index in this region, given the limited angular resolution of Planck , especially at low frequencies. A cut of a narrow strip around the Galactic equator  (| b | < 3°)  , however, allows us to overcome this problem. We show that, once this strip is removed, the CCA allows an effective foreground subtraction, with residual uncertainties inducing a minor contribution to errors on the recovered CMB power spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号