首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Decadal variability of subsurface temperature in the North Pacific has been investigated. Two dominant regions were found; the central subarctic region (CSa) and the north-eastern subtropical region (NESt). In CSa, cooling (warming) of wintertime subsurface temperature corresponds to the large (small) temperature gradient and southward (northward) shift of subsurface temperature front, associated with the increase (decrease) of positive wind stress curl and the southward (northward) shift of curl τ zero line with 2 years delay. It is suggested that the relocation of subtropical-subarctic boundary plays an important role. In NESt, importance of heat flux through the sea surface and heat divergence in the Ekman layer is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Sea surface cooling induced by tropical cyclones (TCs) is an important component of air-sea interactions. Using coordinate transformation and composite analysis...  相似文献   

3.
南海是西北太平洋最大的边缘海, 是联系北太平洋和北印度洋的关键通道。黑潮北上经过吕宋海峡时会将来自西太平洋的信号传入南海, 进而影响南海的水动力环境。研究了南海次表层盐度的空间分布特征、低频变化规律及其与太平洋年代际振荡(Pacific Decadal Oscillation, PDO)的关系, 并进一步探究了次表层盐度近年来的变化。结果显示: 1)南海次表层高盐水的位势密度主要介于24~26σθ, 受次表层气旋式环流所驱动, 盐度气候态空间分布北高南低, 以吕宋海峡处为起点, 呈逆时针自北向南逐渐降低。2)次表层盐度低频变化显著, 与PDO呈显著的正相关关系。当PDO处于正位相时, 吕宋海峡处西向平流输送加强, 次表层盐度升高; 当PDO处于负位相时, 吕宋海峡处西向平流输送减弱, 次表层盐度降低, 盐度的变化受到水平环流场的直接影响。3)近年来, 南海次表层盐度呈现先降低后升高再降低的趋势, 滞后PDO约10个月, 2006— 2014年初, 盐度呈下降趋势; 2014—2017年初, 盐度呈上升趋势, 且上升速率远大于先前下降的速率; 2017年后盐度再次逐渐降低。  相似文献   

4.
西北太平洋海表温度变化主成分分析   总被引:1,自引:0,他引:1  
对西北太平洋1982—2010年NOAA系列卫星海表温度(Sea Surface Temperature,SST)产品进行月平均等处理,采用Reynolds SST月平均场对数据进行质量控制、数据融合等处理,建立高空间覆盖、长时间序列的SST场数据集。对月距平场进行经验正交函数(EOF)分解,分析时空模态特征,并将第一模态时间序列与相关气候时间序列进行比较。主成分分析结果显示西北太平洋SST存在显著的约13a周期的年代际模态和2~5a的类厄尔尼诺模态,年代际变化和西太平洋暖池的年代际振荡相似;类厄尔尼诺模态与Ni珘no-3.4区SST周期变化较为相关,并相对于厄尔尼诺具有约10个月的滞后。本研究显示,西北太平洋可能在多种不同时间尺度气候机制的控制之下。  相似文献   

5.
Using time series of hydrographic data in the wintertime and summertime obtained along 137°E from 1971 to 2000, we found that the average contents of nutrients in the surface mixed layer showed linear decreasing trends of 0.001∼0.004 μmol-PO4 l−1 yr−1 and 0.01∼0.04 μmol-NO3 l−1 yr−1 with the decrease of density. The water column Chl-a (CHL) and the net community production (NCP) had also declined by 0.27∼0.48 mg-Chl m−2 yr−1 and 0.08∼0.47 g-C-NCP m−2 yr−1 with a clear oscillation of 20.8±0.8 years. These changes showed a strong negative correlation with the Pacific Decadal Oscillation Index (PDO) with a time lag of 2 years (R = 0.89 ± 0.02). Considering the recent significant decrease of O2 over the North Pacific subsurface water, these findings suggest that the long-term decreasing trend of surface-deep water mixing has caused the decrease of marine biological activity in the surface mixed layer with a bidecadal oscillation over the western North Pacific.  相似文献   

6.
Variation in the cadmium (Cd) concentration related to phosphate (PO4) in the surface layer (0–150 m) of the equatorial Pacific (175°E, 170°W, and 160°W) was investigated in January of 2001 and 2002. A plot of Cd against PO4 from 0 to 150 m showed good linearity, and plotted points shifted in the direction of the origin along the regression line from 2001 to 2002. The variation of the Cd concentration in the surface layer was attributed to biological uptake-regeneration, the variation of subsurface water concentration, and the upwelling effect at each station in connection with the El Nino phenomenon.  相似文献   

7.
讨论了西中太平洋经向大气环流的年际变化特征,其中西太平洋区(WP)和中太平洋区(CP)EOF分解的第一模态分别是WP的负异常Hadley环流和CP的正异常Hadley环流,其时间系数与Nio3.4指数极为一致;第二模态的最显著空间特征是两区都在5°N~15°N有异常上升,但其时间系数与Nio3.4指数同期相关很低。西中太平洋有2类海表面温度异常(SSTa),通过其上的深对流潜热加热驱动异常Hadley环流:El Nio型驱动了WP区和CP区赤道区符号相反的第一模态异常环流型;热带辐合带(ITCZ)型驱动了WP区和CP区5°N~15°N区符号一致的第二模态异常环流。  相似文献   

8.
Variability of the North Pacific Current and its bifurcation   总被引:2,自引:0,他引:2  
The North Pacific Current (NPC) bifurcates approaching the west coast of North America into a subpolar branch that forms the Alaska Current, and a subtropical branch that includes the California Current. The variability of this current system is discussed using numerical results from a wind-driven, reduced-gravity model. Indices of the strength of the subpolar and subtropical components of the NPC are examined based on output from multi-decadal simulations with the numerical model. This shows periods of both correlated and anti-correlated variability of the subpolar and subtropical gyres. A decomposition of the gyre transport time series indicates that the dominant mode of variability is a “breathing” mode in which the subpolar and subtropical gyres co-vary in response to fluctuations in the strength of the NPC. This finding is consistent with an analysis of dynamic height data of limited duration from the array of Argo drifting floats.The variability of the NPC is also examined using sea surface height (SSH) data from satellite altimetry over the period 1993-2005. The leading mode of SSH over the northeast Pacific dominates the variability of the NPC and is shown to be associated with in-phase variations in the transport of the subtropical and subpolar gyres. A strong correlation is found between time-dependent fluctuations in SSH across the NPC and variations in the strength of the transport of the NPC in the model. This agreement provides evidence for variability of the NPC occuring in direct response to large-scale atmospheric forcing.  相似文献   

9.
Limitations in sea surface salinity (SSS) observations and timescale separation methods have led to an incomplete picture of the mechanisms of SSS decadal variability in the tropical Pacific Ocean, where the El Niño Southern Oscillation (ENSO) dominates. Little is known regarding the roles of the North Pacific Gyre Oscillation (NPGO) and the Pacific Decadal Oscillation (PDO) in the large-scale SSS variability over the tropical basin. A self-organizing map (SOM) clustering analysis is performed on the intrinsic mode function (IMF) maps, which are decomposed from SSS and other hydrological fields by ensemble empirical mode decomposition (EEMD), to extract their asymmetric features on decadal timescales over the tropical Pacific. For SSS, an anomalous pattern appeared during 1997 to 2004, a period referred to as the anomalous late 1990s, when strong freshening prevailed in large areas over the southwestern basin and moderate salinization occurred in the western equatorial Pacific. During this period, the precipitation and surface currents were simultaneously subjected to anomalous fluctuations: the precipitation dipole and zonal current divergence along the equator coincided with the SSS increase in the far western equatorial Pacific, while the weak zonal current convergence in the southwestern basin and large-scale southward meridional currents tended to induce SSS decreases there. The dominant decadal modes of SSS and sea surface temperature (SST) in the tropical Pacific both resemble the NPGO but occur predominantly during the negative and positive NPGO phases, respectively. The similarities between the NPGO and Central Pacific ENSO (CP-ENSO) in their power spectra and associated spatial patterns in the tropics imply their dynamical links; the correspondence between the NPGO-like patterns during negative (positive) phases and the CP La Niña (CP El Niño) patterns for SSS is also discussed.  相似文献   

10.
Time-series data from sediment trap moorings intermittently deployed during 1991–1999 show that the fluxes of biogenic material (carbonate, opal and organic matter, including amino acids) and other related parameters are temporally and spatially distinct across the Western Pacific Warm Pool (WPWP). These variations resulted from the El Niño and La Niña conditions, which alternately prevailed over the equatorial Pacific Ocean during the mooring deployments. The westernmost WPWP (a hemipelagic region) recorded relatively high average total mass and amino acid fluxes during the El Niño event. This was in sharp contrast to the eastern part of the WPWP (oligotrophic and weak upwelling regions) which recorded higher flux values during the La Niña event. Settling particulate organic matter was rich in labile components (amino acids) during La Niña throughout the study area. Relative molar ratios of aspartic acid to β-alanine together with relative molar content of non-protein amino acids β-alanine and γ-aminobutyric acid) suggested that organic matter degradation was more intense during La Niña relative to that during El Niño in the WPWP. This study clearly shows that during an El Niño event the well documented decrease in export flux in the easternmost equatorial Pacific is accompanied by a significant increase in export flux in the westernmost equatorial Pacific Ocean.  相似文献   

11.
Quantitative identification of long-term changes in the abundance of Japanese anchovy (Engraulis japonicus) in the Yellow Sea is particularly important for understanding evolutionary processes of the Yellow Sea ecosystem. Unfortunately, the driving mechanisms of climate variability on the anchovy are still unclear due to the lack of long-term observational data. In this study, we used the fish scale deposition rate in the central Yellow Sea to reconstruct the time series of the anchovy stock over the past 400 a. On this basis, we further explored the impacts of the Pacific Decadal Oscillation (PDO) on the anchovy. Our results show that the anchovy stock is positively correlated with the PDO on a decadal time scale. In addition, anchovy abundance was relatively high during 1620–1860 AD (the Little Ice Age, LIA), though in a state of constant fluctuation; anchovy abundance maintained at a relatively low level after ~1860 AD. In particular, followed by overfishing since the 1980s, the anchovy stock has declined sharply. Based on these findings, we infer that fluctuations of the anchovy stock may be regulated by basin-scale “atmosphere–ocean” interactions. Nevertheless, the role of overfishing should not be ignored.  相似文献   

12.
The annual variabilities of the sea surface height in the Pacific Ocean were investigated by analyzing the TOPEX/POSEIDON satellite data and by solving a reduced gravity model. We discuss how adequately the simple model can capture the variabilities of the sea surface height, and what the cause of the variabilities is. Three large amplitude peaks in the satellite data are found along the 12°N longitude line. Two elongated zones with a large amplitude are also found: one extends east-west along 6°N and the other extends northwestward from South America around 25°S. These features are adequately reproduced in the numerical simulation of the reduced gravity model. The propagation of the Rossby wave is analyzed by the use of the extended Eliassen-Palm flux to investigate the mechanism of these annual variabilities. The two east peaks around 12°N can be explained in terms of the interference between the local Ekman pumping and the free wave emitted near the western coast of North America, and the most western peak is affected by the Rossby wave formed by the local wind stress. The elongated zonal area around 6°N is mainly due to the local Ekman pumping. Another area around 25°S results from the convergence of the free Rossby wave emitted from the eastern boundary and the area with the strong wind stress curl off South America. A discrepancy between the satellite data and the model results suggests that the eastern equatorial Pacific Ocean is relatively calm in the model but not in the satellite data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The characteristics of temperature and salinity variation in the Pacific warm pool were investigated using Empirical Orthogonal Function (EOF) analysis on one year's temperature and salinity data in the surface layer (0–50 m) obtained from the Triangle Trans-Ocean Buoy Network (TRITON) buoy array. Two dominant modes of surface temperature and salinity variation were found. One is a positive correlation mode where temperature and salinity were scattered almost parallel to isopycnal lines in a T-S diagram, which has little effect on the density field. The other is a negative correlation mode where temperature and salinity were distributed across isopycnal lines, which has a substantial impact on the density field. In particular, we found that the negative correlation mode at 5°N, 156°E was predominant on a seasonal time scale and contributed to the surface dynamic height variation, and therefore to surface geostrophic current. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We proposed an empirical equation of sea surface dimethylsulfide (DMS, nM) using sea surface temperature (SST, K), sea surface nitrate (SSN, μM) and latitude (L, °N) to reconstruct the sea surface flux of DMS over the North Pacific between 25°N and 55°N: ln DMS = 0.06346 · SST  0.1210 · SSN  14.11 · cos(L)  6.278 (R2 = 0.63, p < 0.0001). Applying our algorithm to climatological hydrographic data in the North Pacific, we reconstructed the climatological distributions of DMS and its flux between 25 °N and 55 °N. DMS generally increased eastward and northward, and DMS in the northeastern region became to 2–5 times as large as that in the southwestern region. DMS in the later half of the year was 2–4 times as large as that in the first half of the year. Moreover, applying our algorithm to hydrographic time series datasets in the western North Pacific from 1971 to 2000, we found that DMS in the last three decades has shown linear increasing trends of 0.03 ± 0.01 nM year− 1 in the subpolar region, and 0.01 ± 0.001 nM year− 1 in the subtropical region, indicating that the annual flux of DMS from sea to air has increased by 1.9–4.8 μmol m− 2 year− 1. The linear increase was consistent with the annual rate of increase of 1% of the climatological averaged flux in the western North Pacific in the last three decades.  相似文献   

15.
An analysis is presented of data on chlorophyll a concentrations of the total and the netplankton (>10 μm), determined either in April to June or in August to September from 48°N to 15°S along 175°E in the Pacific Ocean during 6 years by the NOPACCS (Northwest Pacific Carbon Cycle Study). Particular attention was given to the variability of absolute concentrations of the netplankton chlorophyll a and their percentage shares of the total chlorophyll a concentration. Below 0.2 μg l−1 of surface total chlorophyll a, the netplankton chlorophyll a showed low percentage shares (such as 12.7% on average) with a large variation, but above 0.2 μg l−1 it was 35.9% on average with less variation, showing an accelerated increase at high total chlorophyll a concentrations. High netplankton chlorophyll a concentrations in surface waters were observed at high latitudes, in waters having high chlorophyll a concentrations at sub-surface depth, and in equatorial upwelling. The percentage shares of netplankton in the total chlorophyll a in the euphotic zone were 8.5% and 25.9% above and below 0.2 μg l−1, respectively, although the data points scattered over a wide range (from 7.2% to 53.8%) depending on differences in water masses, depths and seasons. High chlorophyll a concentrations and high percentage shares of netplankton corresponded to high ambient nitrate plus nitrite concentrations. Integrated netplankton chlorophyll a concentrations in the euphotic zone varied from 0.7 to 19.5 mg m−2 in waters below 0.2 μg l−1 of surface total chlorophyll a, and from 2.0 to 29.5 mg m−2 above 0.2 μg l−1, and the percentage shares of netplankton for the former were 7.4% on average and 23.7% for the latter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

17.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
北太平洋副热带海洋环流气候变化研究   总被引:10,自引:0,他引:10  
北太平洋副热带环流的变化在全球气候变化和热量的经向输送中占重要地位。本文对近10年有关北太平洋副热带海洋环流气候变化的研究进行了综述。主要研究成果有:用卫星高度计首次观测到全球海洋Rossby波的传播特征;确定了气候意义下北太平洋副热带逆流为2支.揭示了其中一支与北太平洋模态水的存在有关,另一支是夏威夷群岛附近海洋.大气-陆地相互作用的结果;首次发现了台湾以东黑潮流量有显著的准100天振荡等。本文还提出了在北太平洋副热带环流研究中目前存在的新科学问题。  相似文献   

19.
不同气候模态下西北太平洋秋刀鱼资源丰度预测模型建立   总被引:2,自引:0,他引:2  
秋刀鱼(Cololabis saira)资源对海洋环境因素极为敏感,不同气候模态可能对秋刀鱼资源丰度产生不同的影响。根据1990-2014年西北太平洋日本的秋刀鱼渔业中单位捕捞努力量渔获量(CPUE,以此作为资源丰度),以及相应产卵场、索饵场的海表温(SST)遥感数据,探讨太平洋年际震荡(PDO)指数冷、暖年下,秋刀鱼资源丰度CPUE变化与产卵场、索饵场SST的关系,并分别建立资源丰度的预测模型。研究表明,PDO冷年索饵场4月SST与年CPUE显著相关(P<0.05),PDO暖年索饵场11月的SST与年标准化CPUE显著相关(P<0.05)。PDO冷、暖年的秋刀鱼资源丰度的预测模型中,CPUE均与索饵场11月的SST、索饵场4月SST呈现正相关的关系,统计学上为显著相关(P<0.05)。PDO冷年(2012年)和PDO暖年(2014年)的CPUE预测值与实际值相对误差分别为14.03%、-16.26%,具有较好的拟合效果。研究认为,不同气候模态下,可用于秋刀鱼资源丰度预测的环境因子不同,上述建立资源丰度模型可用于业务化运行。  相似文献   

20.
北太平洋海温分布与7月副高的遥相关分析   总被引:2,自引:0,他引:2  
选取1952-2005年共54 a北太平洋月平均海表温度(SST)资料,奇异值分解结果表明,6月日界线附近西风漂流区的SST包含了北太平洋SST场的主要信息,西风漂流区与赤道冷水区的SST存在遥相关振荡,并且在6月振幅达全年最高值,11月其振幅出现次高值。分析结果表明,6月西风漂流区的SST可视为来年7月西太平洋副高强弱变化的信号:6月西风漂流区的SST偏低,则来年7月西太平洋副高偏强;反之,来年7月西太平洋副高偏弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号