首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
南海北部深水区盆地热历史及烃源岩热演化研究   总被引:2,自引:0,他引:2       下载免费PDF全文
南海北部深水区是中国重要的油气潜力区.本文在前人对其现今地温场和正演热史研究的基础上,利用磷灰石(U-Th)/He和镜质体反射率(Ro)数据对根据拉张盆地模型正演获得的热历史进行了进一步约束,并在此基础上对南海北部深水区的烃源岩热演化进行了研究.研究结果表明基于盆地构造演化模型的正演热历史可以作为烃源岩热演化计算的热史基础,而盆地内主力烃源岩热演化计算结果显示:南海北部深水区存在4个生烃中心,即珠江口盆地的白云凹陷和琼东南盆地的乐东凹陷、陵水凹陷和松南凹陷,生烃中心烃源岩有机质现今处于过成熟状态,以生气为主;受盆地基底热流显著升高的影响,32~23.3 Ma时段为南海北部深水区烃源岩快速成熟阶段,琼东南盆地烃源岩有机质现今(2.48 Ma后)还存在一期加速成熟过程,而珠江口盆地则不存在此期快速成熟过程.  相似文献   

2.
应用含油气盆地热史模拟系统, 对江汉盆地南部的钻井资料进行了模拟计算, 恢复了研究区的热史和埋藏史. 在此基础上, 正演了下志留统烃源岩成熟度的演化史. 研究结果表明,江汉盆地在印支期(240 Ma)以前处于稳定的低热流(50~55 mW/m2)状态, 印支期后热流开始整体升高. 潜北断裂以北地区的热流在中燕山期(155 Ma)达到峰值(~72 mW/m2), 断裂以南的热流在晚燕山期(40 Ma)达到峰值(~76 mW/m2). 晚喜山期后, 整个研究区的热流快速下降, 盆地开始冷却. 早三叠世末, 下志留统烃源岩在枝江、当阳、沔阳凹陷一带率先进入生油门限, 早侏罗世至早白垩世末烃源岩进入快速增熟期, 成熟度具有北高南低的特征. 晚白垩世末, 烃源岩热演化特征表现为东强西弱. 到了新近纪末, 烃源岩热演化终止. 研究区热史恢复和下志留统烃源岩成熟度演化的研究为合理评估烃源岩生烃量、排烃量和油气资源量提供了科学依据.  相似文献   

3.
峨眉山超级地幔柱对四川盆地烃源岩热演化的影响   总被引:9,自引:1,他引:8       下载免费PDF全文
四川盆地的构造、热演化与峨眉山超级地幔柱有密切关系.峨眉山超级地幔柱对四川盆地中二叠统之下的烃源岩热演化有着十分重要的影响.在四川盆地热历史恢复的基础上,研究了峨眉山超级地幔柱对盆地内烃源岩,特别是中二叠统之下的古生界烃源岩热演化的影响.结果表明,中二叠统及下伏烃源岩的热演化受中晚二叠世发生在盆地西南方向的峨眉山超级地幔柱的影响巨大,且具地区差异性.即在靠近峨眉山地幔柱中心的地区,有机质迅速成熟并达到其成熟度的最高值(以H1井为代表),古生界烃源岩迅速进入过成熟,此后未有二次生烃;而远离峨眉山地幔柱的盆地大部分地区,古生界烃源岩在二叠纪以来具有多次生烃过程.中生界烃源岩热演化,主要和前陆盆地阶段的构造过程包括前陆沉积和断裂的逆冲推覆等相关. 在烃源岩有机质成熟度演化史的基础上,从盆地热史和烃源岩热演化的角度指出了下二叠统及之下烃源层在四川盆地不同地区油气勘探中的不同意义.  相似文献   

4.
烃源岩总有机碳含量(TOC)的预测是烃源岩有机质丰度评价的重要一环.为解决传统ΔlogR方法应用于陆相深层烃源岩误差较大的问题.本文以ΔlogR法为基础,提出了一种考虑密度因素的广义ΔlogR法预测TOC.传统ΔlogR方法是一种基于测井曲线(声波、电阻率等)和成熟度参数(LOM)的预测TOC的方法,可以获得纵向上连续的有机碳分布,并且在国内外多个地区取得了较好的效果.但是研究表明,由于陆相深层烃源岩受到压实作用等影响,传统ΔlogR方法预测的结果不理想.干酪根有机质的密度远低于烃源岩基质密度,将考虑密度因素的广义ΔlogR法预测TOC的方法应用于渤中凹陷西南部东营组和沙河街组烃源岩,对其TOC进行分段预测,并与传统ΔlogR法、敏感测井多元回归方法预测结果进行对比,结果表明,研究区使用该方法的效果要优于其他两种方法.该方法拓展了传统ΔlogR法的适用范围,为烃源岩TOC的预测提供了新的思路和方法.  相似文献   

5.
库车坳陷克拉苏逆冲带晚期快速成藏机理   总被引:1,自引:0,他引:1  
基于库车坳陷克拉苏逆冲带喀桑托开背斜带克拉1、克拉2和克拉3构造油气生、运、聚过程分析, 以及通过一系列油气藏地球化学证据表明, 烃源岩晚期快速生烃与超压流体主排放通道及其控制的天然气快速汇聚输导体系是逆冲带天然气晚期快速成藏的2个重要条件. 由于逆冲带构造叠加导致的地层重复加厚, 使得下伏烃源岩快速深埋, 在较短的2.3 Ma时间内烃源岩成熟度自1.3% Ro增加到2.5%Ro, 熟化/生烃速率达到了0.539%Ro/Ma, 表现出逆冲构造叠加作用对烃源岩生烃的显著加快效应, 以及逆冲带烃源岩在短期内可以为晚期成藏快速提供充足的气源. 该背斜带具有多种构造样式, 只有断层扩展褶皱相关断层才能形成切穿膏泥岩盖层的超压流体主排放通道, 由此导致的盐下流体低势区成为天然气快速汇聚的有利部位. 露头构造、地震剖面解释构造和自生高岭石与储层物性证据一致表明, 克拉2构造相关断裂形成的超压流体主排放通道及其天然气快速汇聚输导体系是该大型气田成藏的关键; 而克拉2构造两侧的克拉1和克拉3构造由于不具备天然气快速汇聚输导体系, 从而不利于天然气聚集成藏.  相似文献   

6.
2008年10月5日在新疆乌恰地区发生的M_S6.8地震,微观震中位于乌恰县境内,距边境18km,宏观震中位于吉尔吉斯斯坦共和国努拉村,距新疆乌恰县伊尔克什坦口岸西南约7km处,极震区烈度达到8度(境外).我国境内Ⅶ度和Ⅵ度区面积分别为7354km~2和1031km~2.这次地震的发生与南北向的卡兹特阿尔特弧形断裂带的活动有关.震区建筑物遭到一定程度的破坏,地质灾害现象较明显.  相似文献   

7.
基于40余个芳烃组分的GC-MS及相关分析资料,阐明了四川盆地北部上三叠统须家河组煤系烃源岩在成熟晚期到过成熟阶段(Ro=1.13%~2.85%)芳烃组成的热演化特征,并剖析了适用于高-过成熟烃源岩有机质生源和沉积环境判识的芳烃指标.研究结果表明,在高热演化阶段这些烃源岩中低碳环数的萘及菲系列随成熟度增高而减少,而、苯并萤蒽、苯并[e]芘等高碳环数化合物逐渐相对富集,且母体化合物趋于增多,是高地温条件下的裂解和持续的脱氢作用所引起的聚合反应所致.它们的MPI1值随成熟度(Ro)呈两段式线性变化趋势,在Ro1.80%时随之升高,Ro1.8%时降低,两者的关系式分别为Ro=0.98MPI1+0.37和Ro=-0.90MPI1+3.02,不同于前人的结果.当Ro值高于1.1%时二苯并呋喃类化合物开始急剧减少,导致芳烃三芴系列组成发生显著变化,因而不适用于高-过成熟煤系烃源岩的沉积环境识别.4-/1-MDBT比值可作为反映有机相变化的有效指标,能区分高成熟煤与泥岩.2,6-/2,10-DMP,1,7-/1,9-DMP比值和三芳甾烷丰度可作为高演化烃源岩的有机质生物源参数,能指示陆源输入与水生生物贡献的大小.  相似文献   

8.
通过对塔里木盆地主要含气区74个天然气样品碳、氢同位素分析, 天然气可分为6类, 即: ①与陆相煤系有关的煤成气; ②与三叠-侏罗系湖相泥岩有关的煤成气; ③与海相沉积的寒武系-下奥陶统烃源岩有关的油型气; ④与海相-海陆过渡相烃源岩有关的油型气; ⑤石炭系海陆过渡相烃源岩与中生界腐殖型有机质形成的混合气; ⑥塔西南坳陷有机热解气与少量深部气形成的混合气. 不同类型天然气中甲烷氢同位素组成受源岩沉积环境(有机质类型)和热成熟度双重因素控制, 其中沉积环境(有机质类型)为主要控制因素, 其次为热成熟度; 在源岩热演化程度相近时, 甲烷氢同位素组成主要与其源岩沉积环境(有机质类型)有关. 随着气源岩热演化程度的增高和/或烷烃气碳数的增加, 烷烃气氢同位组成呈逐渐变重的趋势; 重烃气氢同位素组成(d D2, d D3)主要受源岩热成熟度控制, 其次为源岩沉积环境. 烷烃气氢同位素系列局部倒转与细菌氧化、不同类型天然气混合和/或同一类型不同热成熟天然气混合有关. 在油型气中, d D1>d D2可能与硫酸盐还原反应有关.  相似文献   

9.
利用镜质体反射率(Ro)、磷灰石裂变径迹(AFT)和伊利石结晶度(IC指数)等古温标恢复了四川盆地川西坳陷的钻井热史,对比了不同温标最高古地温的恢复结果.研究表明,研究区晚白垩世至今总体表现为冷却及抬升剥蚀的过程,地温梯度由约26℃·km-1降低至约22℃·km-1,剥蚀量约1.3~1.9km.约80 Ma以来开始抬升剥蚀,40—2.5 Ma经历了一个热平静期,第四纪存在一定的增温,地温梯度增高约5℃·km-1.三种古地温恢复结果具有较高的一致性,相对于镜质体反射率(Ro)和磷灰石裂变径迹(AFT)等成熟古温标,伊利石结晶度作为有机质成熟度指标和沉积岩古温标的应用处于定性分析阶段,该指标的热演化模型仍需进一步探索.  相似文献   

10.
分析研究了江汉盐湖盆地明钾1井古近系潜江组烃源岩的芳烃馏份中甲基化烷基色瞒的分布和相对组成及其变化.研究结果表明甲基化烷基色瞒系列的分布特征与古沉积环境的盐度关系密切,盐湖相形成的潜一至潜三段烃源岩具有甲基和二甲基烷基色瞒的优势,而非盐湖相形成的潜四段烃源岩呈现出以三甲基烷基色瞒为主,且这一分布特征与表征沉积环境盐度变化特定的生物标志物组合如低的姥植比、高伽马蜡烷指数和富含有机硫化物等具有协同变化.二甲基色瞒比值(5,8-二甲基色瞒/7,8-二甲基色瞒)与烃源岩中镜质体反射率Ro和烃源岩埋藏深度间存在良好的相关关系,且这一关系在镜质体反射率Ro小于0.65%的低成熟阶段特别明显,表明该比值是一个在低成熟阶段对有机质热演化程度的变化十分敏感的芳烃成熟度指标.  相似文献   

11.
The disposition and petrology of a fractionated alkali olivine basalt—peralkaline rhyolite suite from subantarctic Campbell Island are discussed. These rocks (Campbell Island Volcanics: new name) are flows and high-level intrusions derived from two centres of igneous activity. Their age is Upper Miocene and they evolved over a period of 5 Ma. A gabbro intrusion pre-dates volcanism by 5 Ma. The ages of the flows and high-level intrusions cannot be separated, although the intrusions are chemically distinct as they contain all the intermediate members of the suite (mugearite and benmoreite). Similar La/Ce and Zr/Nb ratios for flows and high-level intrusions suggest a co-magmatic origin. Chemical variations indicate that the suite resulted from low-pressure mafic then felsic-dominated fractional crystallisation, which is substantiated for intermediate members of the suite by least-squares and Rayleigh fractionation modelling. One flow of alkali olivine basalt clearly pre-dates other volcanic rocks, and is thus regarded as being genetically unrelated.Although chemically similar to alkali olivine basalt and hawaiite, variations in the mineral chemistry and modal mineralogy of gabbro indicates a prolonged period of in-situ fractionation and re-equilibration.  相似文献   

12.
The Messum igneous complex (MIC) lies within the ENE-trending zone of Lower Cretaceous (132 Ma) Damaraland intrusive complexes in Namibia, intruded into Pan-African Damara basement. It is defined by a roughly circular structure 18 km in diameter, the bounding ring fault exposed along the eastern sector. Encircling Messum are the volcanic sequences of the Goboboseb Mountains, comprising a lower basalt series (Tafelkop and Tafelberg types) followed, with intervening basalts, by four voluminous quartz latite (QL) eruptions (Goboboseb and Springbok QL units).Inferred stages of development are: (a) an initial very broad basaltic lava shield, comprising the Tafelberg and Tafelkop basalts, and Messum crater basalts (MCB; possibly ponded in near-vent lava lakes). Embedded within the lower basaltic sequence is a localised rhyolite-dominated eruptive centre (ca. 5 km in diameter), interpreted as a funnel caldera located towards the centre of the MIC. (b) Downsagging, extending northwards from Messum, following the Goboboseb QL eruptions (≥2300 km3). Ponding of overlying basaltic units. (c) Climactic Springbok QL eruption (≥6300 km3) producing further downsag together with the inward radial dip of all volcanic units towards the MIC. Ring fault initiation. (d) Cauldron subsidence emplacement of a granitoid suite, forming the MIC ‘moat’ (area between the ring fault and the core region). (e) Intrusion of gabbroic cone sheets into incompletely solidified granitic melts within the southeastern moat. Resulting hybridisation and magma mingling produced extensive development of heterogeneous granitoid and hybrid dioritic lithologies. (f) Cone sheet intrusions of the eastern gabbros into more highly solidified granitoids of the southeastern moat. (g) Intrusion of thick (1–2 km) western gabbro cone sheets, exhibiting local fine-scale layering, into solidified granitoids, mainly within the western moat. Minor late-stage granitic intrusions. (h) 2–3 Ma quiescent period followed by quartz- and ne-syenite intrusions, and finally basanite dykes, emplaced within the MIC core. Accompanying differential uplift of the core.Uplift/resurgence within the MIC has accompanied intrusion of the moat granitoids and mafic cone sheets, thereby juxtaposing volcanic and intrusive sequences. Phases of both subsidence and uplift have characterised the MIC. The NW Scotland Tertiary central igneous complexes and Messum show evidence of a number of parallel developments, but also important differences. The MIC differs markedly from caldera systems within the western USA and circum-Pacific. Messum is therefore suggested to represent a distinct class of intrusive/extrusive central complex, although probably common in large igneous provinces.  相似文献   

13.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   

14.
The distribution of placers containing coarse nuggets of the nickel-iron alloy, josephinite, are found to have a close spatial relationship to a narrow zone of intense shearing, serpentinization, and igneous intrusion within the Josephine Peridotite. These field relations, together with the frequent occurrence of magnetite and serpentine with the alloy, indicate that the mineral is the product of hydrothermal metamorphism and serpentinization of the peridotite. This is confirmed by the discovery of the nickel-iron in serpentine veins cutting moderately altered harzburgite. Andradite garnet, a common skarn mineral produced by contact metamorphism around igneous intrusions, is often intergrown with the nickel-iron. This may indicate that the unusually coarse grain size of the josephinite is the result of the special conditions accompanying igneous intrusion in the serpentine belt.  相似文献   

15.
A 45-km square seismic reflection profiling grid survey was made in the part of the Herodotus basin where there is a large thickness of strongly deformed sediment, to determine the nature and cause of the deformation. The survey showed that the area has sediment ponded between highs in the underlying deformed sedimentary sequence, which becomes more deformed with increasing depth. The deepest continuous reflector that can be seen is probably reflector M. The seismic velocity above this is 3.2 km s?1; a velocity could not be obtained from below this reflector. A map of depth to reflector M shows small rises superimposed on a strong linear north-south rise. There are no magnetic anomalies associated with any of these rises, so they are not caused by doming above igneous intrusions. The structures could be caused by syn-depositional folding, or sedimentary diapirism, of which sedimentary diapirism seems the most probable.  相似文献   

16.
Sixteen arcuate intrusions have been emplaced at extremely high levels into the basaltic shield volcanoes of Saint Helena. These intrusions are of special interest because of their small size and modes of emplacement. The arcuate masses are of three distinctive types:
  1. Irregular, steeply inward-dipping, basic sheets with diameters of 150 m to 450 m infill tensional fractures originating at depths of about 500 m beneath the volcano surface.
  2. Strongly curved sheets from 25 m to 750 m in diameter are cross-sections of inclined intrusions which in three dimensions resemble single sticks of celery. These intrusions, varying from basalt to trachyte in composition, are infilled tensional fractures originating at « point » pressure sources, inclined to the horizontal, at depths of about 500 m below the surface.
  3. Salic intrusions with near-vertical sides and gently inclined roof-infillings have outer diameters of 350 m to 1070 m. Pressure exerted onto the flanks of the volcano by domed, convex upwards, areas of a magma chamber roof, at a depth of about 2 km, caused near-vertical ring fractures to form. Formation of a sub-horizontal cross fracture and subsequent intrusion of magma produced the « roof-infillings » by updoming the overlying basalts or sinking of the enclosed block, or combinations of the two processes. Two intrusions of this third type are multiple.
  相似文献   

17.
Two contacts between Sudbury norite and northwest-trending diabase dikes and two contacts between the overlying micropegmatite and northwest dikes were investigated in order to estimate the depth of burial of the present erosion surface at the time of dike emplacement. A zone of hybrid paleomagnetic direction representing the vectorial sum of an older host component and an intrusion component of decreasing highest blocking temperature and intensity with distance from the intrusion was sought. Subtracting the calculated thermal effect of the intrusion from this highest blocking temperature yields the temperature of the host at the time of magma emplacement. Dividing this host temperature by an estimated paleogeothermal gradient yields the burial depth of the present erosion (or sampling) surface at the time of magma emplacement. Remanence direction in one of the dikes and norite contact zones is not typical for the Sudbury dike swarm of 1250 Ma age, and this contact is not further considered. An earlier published result for a norite-dike contact was reconsidered because of complicated dike geometry and included in this study. In one of the four usable contacts the hybrid zone is represented by three samples, in another by one sample, and in the remaining two only the contact zone width could be used. The final host temperature results are based on 4 individual calculations and show fair consistency with mean values of 287°C (s.d. 13°) and 267°C (s.d. 11°) calculated without and with a correction for viscosity of the host remanence respectively. Using a gradient of 26°C/km for 1250 Ma ago indicates a burial depth of9.5 ± 2km at that time. The fair consistency encourages the use of the method to deduce quantitatively the history of vertical motions of Precambrian terranes, the detail obtained being dependent on the presence of hybrid zones and of intrusions of various ages.  相似文献   

18.
Geothermal aspects of the hypothesis, relating the earthquake swarms in the West Bohemia/Vogtland seismoactive region to magmatic activity, are addressed. A simple 1-D geothermal model of the crust was used to assess the upper limit of the subsurface heating caused by magma intrusion at the assumed focal depth of 9 km. We simulated the process by solving the transient heat conduction equation numerically, considering the heat of magma crystallization to be gradually released in the temperature interval 1100°C to 900°C. The temperature field prior to the intrusion was in steady-state with a surface temperature of 10°C and heat flow of 80 mWm –2 , the temperature at the 9 km depth was 270°C. The results suggest that the temperature and heat flow in the uppermost 1 km of the crust begin to grow 100 ka after the intrusion emplacement only, and that the amplitudes of the changes for the realistic lateral extent (a few kilometres) of the intrusion are very small. It was also found that the rate of magma solidification depends strongly on the thickness of the intrusion. It takes about 100 years for a 50 m thick sill to cool down from 1100°C to 600°C, which value represents the lower limit of the solidus temperature. The same cooling takes only 60 days if the sill is 2 m thick. If the nature of the strongly reflected boundaries, interpreted from the January 1997 Nový Kostel seismograms, is connected with the fresh emplacement of magma, the calculated cooling rates have a predictive potential for the temporal changes of the waveforms.  相似文献   

19.
P-wave travel-time residuals at the Warramunga Seismic Array (WRA) in the Northern Territory, Australia, have been studied from 49 earthquakes with epicenters south of 19°S in the Fiji-Tonga region. Focal depths are between 42 and 679 km as determined from pP-P. Using the Jeffreys-Bullen and the Herrin travel-time tables the epicentral parameters have been redetermined by considering only “normal” seismic stations in the location procedure. These are those stations where P-wave travel times are probably not affected by lateral heterogeneities caused by the lithosphere descending beneath the Tonga trench. Epicenters of deep earthquakes below 300 km have been relocated by using stations at Δ > 25° only. Epicenters from shallower-depth earthquakes have been recalculated without using stations between 35 < Δ < 75° epicentral distance. In both cases focal depths were determined from pP-P times. The resulting pattern of P-residuals at WRA does not show any significant change with depth below 350 km. The residuals become more negative for shallower earthquakes above about 250 km. P-waves to WRA are advanced by approximately 2 s compared with those from deep earthquakes. The results do not essentially differ for the two different travel-time tables used. The observations can be interpreted by P-wave velocities that are higher in the sinking slab down to 350–400 km by 5±2% than in both the Jeffreys-Bullen and Herrin models. Without considering possible elevations of phase boundaries this estimate yields a temperature contrast of 1000±450°C between slab and normal mantle material in this depth range.  相似文献   

20.
The Taiping-Huangshan composite intrusion is a unique complex with characteristics changing from calc-alkaline (Taiping intrusion) to alkaline (Huangshan intrusion). Huangshan intrusion samples show a spectacular tetrad effect in their REE distribution patterns as well as non-CHARAC (charge-and-radius-controlled) trace element behavior, indicating a highly evolved late-stage magma component. This composite intrusion provides a rare opportunity to investigate the variance of tectonic setting and lithospheric thinning of the southeastern Yangtze Craton in late Mesozoic era. Zircon SHRIMP U-Pb analyses yield an emplacement age of 140.6±1.2 Ma for the Taiping intrusion, and ages of 127.7±1.3, 125.7±1.4, 125.1±1.5, and 125.2±5.5 Ma for four samples from the Huangshan intrusion respectively. The ages for four different phases of the Huangshan intrusion agree within their small analytical errors, indicating that the emplacement was in a short time. The Taiping and Huangshan intrusions are intimately associated, but there is about 15 Ma interval between their intrusion, and the magma characters change from calc-alkaline to alkaline without transition. This probably corresponds to lithospheric thinning of the southeastern Yangtze Craton. This event possibly happened from about 141 Ma (the emplacement age of the Taiping intrusion), to 128 Ma (start of emplacement of the Huangshan intrusion). The thinning mechanism is dominantly delamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号