首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
This study firstly analyzed the shrinkage of winter wheat and the changes of cropping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calculated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are as follows. 1) The sown areas of winter wheat in the 11 cities in the Hebei Plain all shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×104ha. The shrinkage was most serious in the Beijing-Tianjin-Tangshan metropolitan agglomerate, with a shrinkage rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%–30%, while those of spring maize and summer maize both exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged only from 160 mm to 210 mm. 3) The water resources conserved as a result of the winter wheat sown area shrinkage during the study period were about 15.96×108m3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Mid-Route of the South-to-North Water Diversion Project.  相似文献   

2.
This study firstly analyzed the shrinkage of winter wheat and the changes of crop- ping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calcu- lated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are as follows. 1) The sown areas of winter wheat in the 11 cities in the Hebei Plain all shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×10^4 ha. The shrinkage was most serious in the Bei- jing-Tianjin-Tangshan metropolitan agglomerate, with a shrinkage rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%-30%, while those of spring maize and summer maize both exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged only from 160 mm to 210 ram. 3) The water resources conserved as a result of the winter wheat sown area shrinkage during the study period were about 15.96×10^8 m^3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Mid-Route of the South-to-North Water Diversion Project.  相似文献   

3.
李国振 《干旱区地理》2001,24(2):189-192
根据阜康生态试验站试验小区1999-2000年冬小麦不同灌溉量控制试验,验证了冬小麦水分敏感期为拔节-灌浆期,探讨了该区冬小麦产量与灌水量之间的关系。提出了阜康地区冬小麦返青水应采用“小水”灌溉的方式。同时通过对小区冬小麦成熟期灌水过程不同深度土壤水分含量的动态观测分析,提出冬小麦在成熟期对灌溉水分的消耗利用集中在0-30cm土壤层内的观点。  相似文献   

4.
基于过程模型的河北平原冬小麦产量和蒸散量模拟   总被引:9,自引:3,他引:9  
本文结合作物参数的遥感信息反演和气象要素的空间尺度扩展方法 ,建立以GIS背景数据库为支撑的冬小麦生长模型 ,研究河北平原农田生态系统生物量和蒸散量的区域分布特征。结果显示 ,河北平原 1990年高产区主要集中在保定中南部、石家庄中部、邢台中部和邯郸东部的南北条带上 ,单产在 6 0 0 0~ 84 0 0kghm- 2 之间 ,廊坊东部、沧州大部分、衡水中部、邢台东部和西部太行山区等是低产区 ,单产低于 30 0 0kghm- 2 。总体而言 ,该地区实际产量与光温生产潜力对比仍有较大差距。在冬小麦生长期 ,蒸散量主要在 30 0~ 5 0 0mm之间 ,水分利用效率低于2 0kghm- 2 mm- 1,其中小于 8kghm- 2 mm- 1的概率分布占 4 2 %左右。农业水资源不足 ,水分利用效率低 ,是该地区冬小麦生产面临的严重问题。  相似文献   

5.
区域水资源量的估算及预测分析——以南京地区为例   总被引:8,自引:6,他引:8  
分析了南京地区的水资源状况,从地表热量平衡、水量平衡的基本理论出发,结合南京地区的气象、水文、土壤等资料建立了区域水资源量估算模型,计算了该地区的地表水、地下水及水资源总量,根据实际资料进行了模型检验,并对未来不同气候变化情景下的水资源状况进行了预测分析,提出了该地区水资源合理利用的方案。  相似文献   

6.
7.
作物的耐盐性及盐水灌溉管理   总被引:3,自引:1,他引:2  
龚家栋 《中国沙漠》1995,15(2):158-164
盐从水分关系、离子毒害、营养和能量平衡等方面影响植物的生长。不同的植物具有不同的耐盐性,同一植物在不同生长期的耐盐性也有差异。有效的灌溉管理是盐水灌溉农业的基础,高频率灌溉有利于缓解由于盐引起的水分亏缺,和对根系带洗盐,同时必须保持植物根系带土壤良好的通透条件。沙地更适合于盐水灌溉,滴灌是最为有效的灌溉方式。灌溉水盐分的增加将导致大多数作物的产量下降,但某些作物品质的改善可在一定程度上补偿产量下降的损失。  相似文献   

8.
秸秆覆盖下的夏玉米蒸散、水分利用效率和作物系数的变化   总被引:29,自引:0,他引:29  
农业用水占华北水资源的70%以上,提高农业用水的效率对华北水资源安全具有重要意义。在节水农业研究中,利用农艺节水提高农田水分利用效率是节水农业的重要组成部分,其中减少农田无效棵间蒸发耗水和优化供水制度是主要的农艺节水措施。夏玉米是华北太行山山前平原的主要作物之一,一般在冬小麦收获前的5~7天套种在其中,以延长夏玉米的生育期。随着联合收割机的广泛应用,冬小麦收获后的秸秆直接覆盖夏玉米,对夏玉米的农田蒸散特别是苗期的蒸散产生影响;夏玉米生长在6~9月的雨季,一般年份降水能够满足夏玉米的需水要求,但夏季降水的分布变异较大,再加上近6年来的夏季干旱,使灌水对夏玉米的高产至关重要。为了提高夏玉米的农田水分利用效率,本研究的目的是建立秸秆覆盖下的夏玉米优化供水制度和研究秸秆覆盖对减少棵间无效耗水的影响及秸秆覆盖下的夏玉米作物系数的变化,为制定秸秆覆盖下的夏玉米优化供水制度提供依据。2年的实验结果显示,秸秆覆盖下的夏玉米产量在8000kg/ha,总蒸散量在390mm,水分利用效率在2.2kg/m3。干旱年份,夏玉米在灌四水的条件下产量最高,再增加灌水量,产量减少。水分利用效率随着灌水量的增加有所递减。  相似文献   

9.
水分胁迫对冬小麦物质分配及 产量构成的影响   总被引:13,自引:1,他引:12  
通过设置不同土壤水分条件和不同生育期受旱处理,研究土壤水分条件对冬小麦生长发育的影响。从器官水平上详细考察了水分条件对小麦物质积累、分配以及产量的影响,并建立产量和耗水量关系。在相对适宜的土壤水分条件,茎秆所占比例较小,为24%,穗部则占56%;而过度灌溉和水分亏缺条件下,茎秆所占比例较大,分别为36%和37%,穗部比例相对较小,仅为43%和48%。各种条件下均以茎秆对产量的贡献量大。相对适宜的土壤水分条件,茎秆对产量的贡献量最大,为0.308g/茎;水分亏缺条件下,叶鞘对产量贡献量较适宜土壤水分条件的叶鞘贡献量要大,分别为0.18克/茎和0.09克/茎;而过度灌溉条件下各器官对产量的贡献量均较小。根据实测产量和蒸散耗水量模拟的产量、水分利用效率与蒸散耗水量的关系可知:禹城地区在现有的肥力水平和栽培管理措施下冬小麦的理论最大产量为6240kg/hm2,蒸散耗水量为473mm,而获得最高水分利用效率的蒸散耗水量为403mm。由于该地区地下水埋深浅,地下水对冬小麦生育期需水量的补给作用明显,试验年份冬小麦拔节期至成熟期地下水补给量占同期耗水量的22%。  相似文献   

10.
在黑河中游边缘绿洲新垦沙地设计大田试验,研究了不同灌溉量(估算春小麦生育期需水量的0.6、0.8、1.0倍)与施氮量(0、140、221和300 kg/hm2)对春小麦生长特性、耗水量及产量的影响.结果表明,灌溉与施氮对春小麦植株高度产生一定的影响,但其效果不明显.高灌溉量加大作物的耗水量,春小麦全生育期,高灌溉处理的耗水量比中等灌溉处理与低灌溉处理分别增加16.68%与36.88%.当施氮量小于221 kg/hm2时,增加施氮量可以提高地上部干物质量、单位面积粒数、单穗粒重与产量,从而提高水分利用效率(WUE);当施氮量大于221 kg/hm2时,高施氮量使大量干物质滞留于营养器官,导致成熟前物质的转移不充分,同时在土壤水分亏缺的条件下,高施氮处理加重干旱胁迫,从而使221 kg/hm2处理的地上部干物质量(4 159 kg/hm2)、单位面积粒数(3 774)、单穗粒重(259.42 mg)、产量(2 132.83 kg/hm2)与WUE(3.85 kg·mm-1·hm-2)在各施氮处理中最高.地上部干物质量、籽粒产量及产量构成要素随灌溉量的增加而增加.低灌溉处理的WUE显著高于中等灌溉处理与高灌溉处理处理,中等灌溉处理与高灌溉处理之间的WUE差异不显著.结果表明,低灌溉处理(春小麦全生育期灌溉量378 mm)与221 kg/hm2施氮是黑河中游边缘绿洲新垦沙地农田可以获得相对较高的经济产量与高WUE的最佳组合.  相似文献   

11.
Wu  Xifang  Qi  Yongqing  Shen  Yanjun  Yang  Wei  Zhang  Yucui  Kondoh  Akihiko 《地理学报(英文版)》2019,29(6):891-908
Journal of Geographical Sciences - The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in...  相似文献   

12.
黄淮海平原地处燕山以南、淮河以北,包含黄河、淮河和海河冲积平原及部分丘陵山区,属于半干旱、半湿润地区,年降水量500~900 mm,是我国主要的冬小麦种植区。利用黄淮海平原49个农气站点1961—2017年日值气象数据,采用Penman-Monteith模型计算的日尺度SPEI指数,从气象干旱的角度分析了黄淮海平原近56 a冬小麦主要生育阶段干旱持续时间和干旱强度的变化,并采用R/S方法对干旱未来变化趋势进行预测。结果表明:(1)从空间分布上来看,冬小麦的营养生长期和并进期,北部干旱持续时间较短,干旱强度较小,南部干旱持续时间较长,干旱强度较大,而冬小麦生殖生长期与前两个生育期干旱分布相反。(2)从各站点变化趋势来看,在冬小麦整个生育期内干旱持续时间与干旱强度呈相反趋势。(3)从时间变化趋势上来看,1961—2017年干旱有明显减缓趋势,除个别站点外,在冬小麦的营养生长期和并进期,干旱持续时间和干旱强度自2003年起干旱有逐渐减缓趋势,在生殖生长期则从2007年起干旱有逐渐减缓趋势。(4)从未来变化趋势来看,营养生长期干旱持续时间将缩短,干旱强度将减小,并进期的干旱持续时间和干旱强度的变化将和过去56 a基本保持一致,生殖生长期干旱持续时间将有所增长,干旱强度将有所加重。本研究分析了黄淮海平原冬小麦生育阶段干旱特征,旨在认识分析和掌握冬小麦生育期干旱演变特征以及干旱发生规律,对保障粮食安全和防旱减灾提供了科学依据。  相似文献   

13.
冬季气候变暖对山西省冬小麦可种植区的影响   总被引:4,自引:0,他引:4  
基于山西省境内较为均匀分布的70 个地面气象观测站1970-2012 年冬季逐日气温资料,采用线性倾向估计法分析了负积温、最冷月平均气温和年极端最低气温的变化特征,采用累积距平法确定其突变点,以突变点为界分为前后2 个时间段,依据前后时间段等值线的变化分析冬季气候变暖对山西省冬小麦可种植区的影响。结果表明:山西省负积温呈现显著减少趋势(通过了α=0.01 的显著检验),最冷月平均气温和年极端最低气温呈现不显著升高趋势;突变后,负积温平均减少了103.4℃,最冷月平均气温和年极端最低气温分别升高了0.8℃和0.7℃;在3 个指标中,决定山西省冬小麦能否种植的关键因子是负积温和年极端最低气温,最冷月平均气温的影响较小;冬季气候变暖后,平均状况下,冬小麦可种植区域面积扩大了约2.9×106 hm2,扩大52%,80%保证率下,冬小麦种植面积扩大了约2.3×106 hm2,扩大79%。  相似文献   

14.
LIU Yujie  YUAN Guofu 《地理学报》2010,20(6):861-875
Global climate change has significant impacts on agricultural production. Future climate change will bring important influences to the food security. The CERES-Wheat model was used to simulate the winter wheat growing process and production in Panzhuang Irrigation District (PID) during 2011–2040 under B2 climate scenario based on the Special Report on Emissions Scenarios (SRES) assumptions with the result of RCMs (Regional Climate Models) projections by PRECIS (Providing Regional Climates for Impacts Studies) system introduced to China from the Hadley Centre for Climate Prediction and Research. The CERES-Wheat model was calibrated and validated with independent field-measured growth data in 2002–2003 and 2007–2008 growing season under current climatic conditions at Yucheng Comprehensive Experimental Station (YCES), Chinese Academy of Sciences (CAS). The results show that a significant impact of climate change on crop growth and yield was noted in the PID study area. Average temperature at Yucheng Station rose by 0.86℃ for 1961–2008 in general. Under the B2 climate scenario, average temperature rose by 0.55℃ for 2011–2040 compared with the baseline period (1998–2008), which drastically shortened the growth period of winter-wheat. However, as the temperature keep increasing after 2030, the top-weight and yield of the winter wheat will turn to decrease. The simulated evapotranspiration shows an increasing trend, although it is not very significant, during 2011–2040. Water use efficiency will increase during 2011–2031, but decrease during 2031–2040. The results indicate that climate change enhances agricultural production in the short-term, whereas continuous increase in temperature limits crop production in the long-term.  相似文献   

15.
气候变化对山东省潘庄灌区冬小麦生长的影响(英文)   总被引:1,自引:1,他引:1  
Global climate change has significant impacts on agricultural production.Future climate change will bring important influences to the food security.The CERES-Wheat model was used to simulate the winter wheat growing process and production in Panzhuang Irrigation District(PID) during 2011-2040 under B2 climate scenario based on the Special Report on Emissions Scenarios(SRES) assumptions with the result of RCMs(Regional Climate Models) projections by PRECIS(Providing Regional Climates for Impacts Studies) system introduced to China from the Hadley Centre for Climate Prediction and Research.The CERES-Wheat model was calibrated and validated with independent field-measured growth data in 2002-2003 and 2007-2008 growing season under current climatic conditions at Yucheng Comprehensive Experimental Station(YCES),Chinese Academy of Sciences(CAS).The results show that a significant impact of climate change on crop growth and yield was noted in the PID study area.Average temperature at Yucheng Station rose by 0.86℃ for 1961-2008 in general.Under the B2 climate scenario,average temperature rose by 0.55℃ for 2011-2040 compared with the baseline period(1998-2008),which drastically shortened the growth period of winter-wheat.However,as the temperature keep increasing after 2030,the top-weight and yield of the winter wheat will turn to decrease.The simulated evapotranspiration shows an increasing trend,although it is not very significant,during 2011-2040.Water use efficiency will increase during 2011-2031,but decrease during 2031-2040.The results indicate that climate change enhances agricultural production in the short-term,whereas continuous increase in temperature limits crop production in the long-term.  相似文献   

16.
为探明黄淮海典型农区冬小麦干热风灾害发生规律,以商丘为例,利用1963-2012年历年冬小麦生长后期的气象资料,系统分析了近50年冬小麦干热风年平均发生日数分布特征及其对气候变化的响应,探讨了干热风发生次数与冬小麦单产的关系。结果表明:近50年商丘地区冬小麦轻度、重度干热风灾害总体表现为减少趋势,轻度、重度干热风灾害年际变化较大,20世纪60年代干热风危害最严重,20世纪80年代和最近10年干热风危害较轻。1972年干热风发生期日最高气温呈现递增突变(P0.05),14时风速在1984年前后出现了显著的减小突变(P0.05),14时相对湿度显著增加,在1981年出现了一次显著的递增突变(P0.05)。日最高气温、14时风速和14时相对湿度三个气候要素综合作用决定了商丘冬小麦干热风灾害整体上呈递减趋势,其中风速的显著减小对干热风灾害减弱起主要作用。商丘地区干热风的年均发生日数与冬小麦单产呈明显的负相关关系。  相似文献   

17.
土地利用对地下水位下降的影响--以河北平原为例   总被引:16,自引:3,他引:13  
许月卿 《地理研究》2005,24(2):222-228
本文利用简化的水量平衡模型,模拟了河北平原1985-1995年多年平均降水入渗系数和含水层给水度,在此基础上计算出各用水部门和各种农作物平均每年引起的地下水位下降幅度。结果表明:农业用水是引起河北平原地下水位下降的主要因素,其次是工业用水和生活用水。小麦引起的地下水位下降幅度最大,谷子最小。生产单位产值的小麦消耗地下水量最大,引起的地下水位下降幅度也最大,生产单位产值的蔬菜消耗地下水量最小,引起的地下水位下降幅度也最小。实现河北平原地下水资源可持续利用,调整种植业结构当务之急。  相似文献   

18.
宋邦国  赵彤彤  陈远生 《地理研究》2016,35(10):1879-1886
农村家庭用水结构调查与影响因素分析是分析农村用水情况,保障用水安全的基础。采用问卷调查和实测的方式获取西藏自治区9个县(市、区)的84个家庭的用水数据,对比分析不同家庭的用水量及用水结构,总结了西藏农村家庭用水的影响因素。研究表明:农村家庭人均生活用水量在33~38 L/d之间,家庭差异显著,主要集中在洗衣、洗菜、洗碗用水三项,家庭生活用水的主要用水项是卫生用水和厨房用水;生产方式与文化风俗习惯影响家庭用水水平,人口组成影响用水结构,常住人口数和家庭收入水平与家庭人均用水量呈现显著负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号