首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
青藏高原降水季节分配的空间变化特征   总被引:2,自引:2,他引:0  
朱艳欣  桑燕芳 《地理科学进展》2018,37(11):1533-1544
青藏高原是全球气候变化影响的敏感区域。在全球气候变暖的背景下,其水文气候过程发生了显著的变化,直接影响到区域水资源演化。然而,目前对该区域水文气候过程的时空演变规律仍认识不足。本文以青藏高原气象站点降水观测数据为基准,结合水汽通量资料,对13种不同源降水数据集质量进行对比分析;并选用质量较好的IGSNRR数据集识别了青藏高原降水季节分配特征的空间分布格局。结果表明,青藏高原东南、西南以及西北边缘地区降水集中度和集中期较小,夏季降水占全年降水比例不足50%;随着逐渐向高原腹地推进,降水集中度和集中期逐渐增大,雨季逐渐缩短且推迟,雨季降水占全年降水比例逐渐增大。降水季节分配的空间分布格局与水汽运移方向保持一致,即主要是由西风和印度洋季风的影响所致。基于此,识别出西风的影响区域主要位于高原35°N以北,印度洋季风的影响区域主要位于高原约30°N以南,而高原中部(30°N~35°N)降水受到西风和印度洋季风的共同影响。该结果有助于进一步理解和认识青藏高原水文气候过程空间差异性。  相似文献   

2.
近44年来青藏高原夏季降水的时空分布特征   总被引:13,自引:3,他引:10  
利用1961-2004 年青藏高原97 个站点的夏季逐日降水数据,通过累积距平、相关分析、回归分析、经验正交函数分解、功率谱方法等,结合GIS 的空间分析功能,分析了夏季 降水的时空分布特征。结果表明:在青藏高原年降水量比较少的地区,夏季降水占全年降水的比例较高,夏季降水与全年降水的相关性也较强;夏季降水相对变率最大的地区位于青藏 高原西北的最干旱地区,最小的地区是三江源区;夏季降水趋势增加和减少的站点分别为54 个和43 个,通过较显著检验的站点占总数的18.6%;在2000m 以下的站点中,海拔和夏季降水气候倾向率存在较强的正相关,相关度达0. 604 (显著性0.01);1961-1983 年和1984-2004 年两个时间段相比,除了3000~3500m 海拔范围外,其余海拔范围夏季降水气候倾向率都表现为增加;夏季降水可大致分为三种类型场:高原东南部类型场、高原东北部类型场和三江 源类型场,高原东南部类型场和高原东北部类型场表现出南北变化相反的降水特点,分界线大致沿着35oN 线;在90%的置信概率下,三种类型场分别表现出5.33 年、21.33 年和2.17 年的潜在周期;4500 m 以上海拔范围的站点夏季降水周期通过很显著检验(α = 0.01),站点海拔和降水周期存在-0.626 的高相关度;在三江源地区,3500 m 以上的站点夏季降水周期随海拔升高而减小,3500 m 以下的夏季降水周期随海拔高度升高而增加。  相似文献   

3.
1998-2012年青藏高原TRMM 3B43降水数据的校准   总被引:1,自引:0,他引:1  
石玉立  宋蕾 《干旱区地理》2015,38(5):900-911
运用1998-2012年青藏高原的TRMM 3B43降水数据以及气象台站实测降水数据,对比分析了青藏高原地区TRMM 3B43降水数据偏差分布规律。结果表明:(1) TRMM 3B43降水数据在青藏高原地区存在明显误差,特别是降水量大的地区和月份,偏差量较大。(2)青藏高原地区TRMM 3B43降水数据偏差分布与海拔、经纬度、降水量存在密切的关系。用偏差分布规律,加法修正法结合随机森林算法对青藏高原地区TRMM 3B43降水数据进行了校准。经过校准之后,数据精度得到显著提高,有效增加了数据的可用性,多年月平均数据决定系数R2最大可达到0.9(3、10月),最小也接近于0.5(12月),效率系数E均为正值,最大可达到90(3、10月);多年季平均和多年平均降水数据中除了第一季度结果稍差外(决定系数R2为0.58),其余数据校准效果均较好。  相似文献   

4.
基于TRMM数据的广西西江流域降水时空分布特征   总被引:1,自引:0,他引:1  
以广西西江流域为研究对象,以TRMM数据为主要数据源,利用研究区15个气象站降水实测数据,使用相关系数、相对偏差和均方根误差对1998—2013年TRMM降水数据进行验证,并在此基础上对广西西江流域的降水时空分布特征进行分析,结果表明:1)TRMM 3B43降水数据与气象站点实测降水数据具有较好的一致性,年尺度和月尺度相关系数分别是0.79和0.92(α0.01),可以代表研究区实际降水情况;2)在降水时间分布上,1998—2013年间年降水量呈微弱的下降趋势,流域降水的季节分配不均匀,大部分降水集中在5至8月;3)在降水空间分布上,降水整体由东向西逐渐递减,春季(3—5月)的降水中心在流域东部,夏季(6—8月)移至西南部,秋季(9—11月)继续停留在西南部,冬季(12—2月)又移回东北部。  相似文献   

5.
TRMM降水数据在横断山区的精度   总被引:5,自引:1,他引:4  
利用相关系数法和散点斜率法对横断山区1998~2011年之间月尺度的TRMM 3B43降水数据精度进行了检验。研究表明,TRMM 3B43降水数据与实测数据相关性很强,但是比实测降水量偏大33.9%。在横断山北部大雪山以东地区和南部香格里-贡山-德钦一带三江并流区TRMM 3B43数据误差较大。各个季节TRMM 3B43降水与实测值误差的空间分布有较大区别,但是都表现为北部沿经向分布,南部沿纬向分布的趋势;横断山区高海拔地区气象站点稀少和复杂的下垫面环境是产生观测误差的主要原因。  相似文献   

6.
青藏高原夏季上空水汽含量演变特征及其与降水的关系   总被引:1,自引:0,他引:1  
周顺武  吴萍  王传辉  韩军彩 《地理学报》2011,66(11):1466-1478
利用青藏高原(以下简称高原) 近30 年(1979-2008 年) 14 个探空站的温度和湿度观测资料以及83 个地面台站的月平均降水资料,分析了高原夏季上空水汽含量与地面降水的联系以及高原地区的降水转化率问题。结果表明:1) 高原夏季水汽含量在空间分布上表现出随海拔高度增高而减少的特征,其中东北部为最大值,东南部为次大值,而西北部为最小值。夏季降水整体上由东南向西北递减;2) EOF分解表明,高原夏季水汽含量存在两种主要的空间分布型:即全区一致变化型和南北反向变化型,其中以唐古拉山脉北侧为界呈现出的水汽含量南北反向型与降水的第一特征向量场表现出的南北反向型在空间分布上十分相似;3) 在年际变化上,高原夏季水汽含量的南北反向型与降水的南北反向型之间存在较一致的对应关系:即水汽含量出现南多北少时,高原南部降水普遍偏多而北部降水普遍偏少,反之亦然;4) 高原夏季平均降水转化率在3%~38%之间,其空间差异非常明显,高原南部降水转化率明显大于北部地区。  相似文献   

7.
羌塘高原降水空间分布及其变化特征   总被引:2,自引:1,他引:1  
羌塘高原作为典型的青藏高原内流区,其降水变化直接影响自身及其周边区域冰冻圈与生态系统的变化。但由于站点观测资料的限制,羌塘高原降水时空格局尚不明确。因此,基于2015年羌塘高原9个自动观测站逐小时降水数据和5套降水格点产品以及1978-2015年西藏地区26个国家台站逐日降水数据,分析羌塘高原降水的空间分布和变化特征。结果表明:(1)2015年羌塘高原核心区降水量和降水日数的均值分别约为154.9 mm和50天,其中,降水量约为东南边缘以及西藏地区多年均值的1/3和1/4。在空间上,降水量呈现东南多、北部少的特征,其中,昆仑山脉以北地区降水量最低,这从降水角度验证了该区域是"寒旱核心"的主要地区之一。(2)雨季与干季分明。西北部雨季分布在6-8月,比东南边缘地区约短1~2个月;且前者降水量呈现单峰型而后者呈现双峰型。(3)在高原核心区,热带降雨测量计划(TRMM)3B43数据和全球降水量测量计划(GPM)IMERG算法数据高估了多数站点的年降水量,主要是高估了干季降水量所致。(4)1978-2015年羌塘高原改则和狮泉河站降水量和降水日数呈现微弱增加趋势,且强降水事件增多。  相似文献   

8.
青藏高原植被NDVI对气候因子响应的格兰杰效应分析   总被引:4,自引:1,他引:3  
多变的气候和复杂的地理环境使得青藏高原植被对气候变化响应敏感,因此分析高原植被与气候因子之间的动态关系对气候变化研究和生态系统管理具有重要意义。论文基于1982—2012年青藏高原气象数据(气温、降水)以及GIMMS NDVI3g遥感数据,在像素级别上运用格兰杰因果关系检验方法,在月尺度和季节尺度上分析了高原植被NDVI(主要是草原)与平均气温、降水量之间的响应情况及因果关系。研究表明:① 月尺度上NDVI与平均气温之间、NDVI与降水量之间的时序平稳性比例高于季节尺度,月尺度下达到平稳性的植被区域分别占99.13%和98.68%,季节尺度下分别占64.01%和71.97%;② 月尺度下高原平均气温和降水量对NDVI影响的滞后期都集中在第12~13个月,荒漠草原、典型草原和草甸3种植被类型的滞后期一致,季节尺度下平均气温和降水量对NDVI影响的滞后期主要分布在第3~4和第6个季度,3种植被类型的滞后期差异性较大;③ 月尺度下,青藏高原约98.95%的植被覆被区的平均气温是引起NDVI变化的格兰杰原因,反之,大部分地区(约89.05%,除高原东南区域)内NDVI也是引起平均气温变化的格兰杰原因;季节尺度下,青藏高原中部以外植被区域(约92.03%)内的平均气温是引起NDVI变化的格兰杰原因,而在东部和西部部分地区(约50.55%)中NDVI也是引起平均气温变化的格兰杰原因;④ 月尺度下,高原东北和西北地区(约72.05%)内的降水量是引起NDVI变化的格兰杰原因,大部分地区(约94.86%,除东南部少量区域)中NDVI是引起降水量变化的格兰杰原因;季节尺度下,高原东南部(约61.43%)地区内的降水量是引起NDVI变化的格兰杰原因,高原中东部地区(约48.98%)中NDVI是引起降水量变化的格兰杰原因。总之,高原植被NDVI与气温、降水的相互作用显著,彼此均可构成格兰杰因果效应,但总体上气候因子的影响程度大于植被的反馈作用,月尺度的效应区域大于季节尺度的效应区域。  相似文献   

9.
中国陆地净初级生产力的季节变化研究   总被引:22,自引:1,他引:22  
了解不同季节陆地净初级生产力(NPP)的变化及与气候的相互关系以及在不同地类的差异对深刻理解我国陆地生态系统对全球气候变化的响应和陆地碳循环研究具有重要意义。本文使用1981~2000年间GLO-PEM模型模拟的我国陆地NPP数据和同期气温、降水以及土地利用数据, 研究不同季节我国陆地植被NPP的变化。结果表明,在1981~2000年期间,四个季节的NPP都呈显著增加趋势,春季是NPP增加速率最快的季节,夏季是NPP增加量最大的季节。耕地在春、夏和秋季NPP增长和增长率最高,林地冬季NPP增长最多而水域冬季NPP增长率最高。夏季NPP增长最高的区域分布于我国东部的多数地区、内蒙古东部、四川盆地、贵州东部、藏南和新疆西部;夏季NPP降低最多的区域分布于在呼伦贝尔高原、鄂尔多斯高原、黄土高原、青藏高原东部和新疆西北部。  相似文献   

10.
青藏高原气温空间分布规律及其生态意义   总被引:6,自引:1,他引:5  
姚永慧  张百平 《地理研究》2015,34(11):2084-2094
作为世界第三极的青藏高原,其巨大的块体产生了显著的夏季增温作用,对亚洲乃至全球气候都具有重大影响。但由于高原自然条件严酷,山区气象观测台站很少,气象资料极度匮乏;如果依靠台站数据进行空间插值获得高原气温的空间分布数据,会由于插值点过少而产生较大误差并可能掩盖一些空间信息,因而难以全面反映高原气温的空间分布规律。利用基于MODIS地表温度数据估算的青藏高原气温数据,详细分析各月气温及重要等温线的空间分布格局,并结合林线和雪线数据,初步探讨了高原气温空间分布格局对高原地理生态格局的重要影响。研究表明:① 等温线的海拔高度自高原东北部、东部边缘向内部逐渐升高,等温线在高原内部比东部边缘高500~2000 m,表明相同海拔高度上气温自边缘向高原内部逐渐升高。② 高原西北部的羌塘高原、可可西里为高原的寒冷区,全年有7个月的气温低于0 ℃,3~4个月的气温低于-10 ℃;青藏高原南部(喜马拉雅山北坡—冈底斯山南坡)和中部(冈底斯山北坡—唐古拉山南坡)是高原的温暖区,全年有5个月的气温能达到5~10 ℃,有3个月的气温能超过10 ℃,尤其是拉萨—林芝—左贡一带在3500~4000 m以下的地区最冷月均温也能高于0 ℃。③ 北半球最高雪线和林线分别分布于高原的西南部和东南部,表明高原气温空间分布特征对本地的地理生态格局具有重要影响。  相似文献   

11.
青藏高原增温效应对垂直带谱的影响   总被引:2,自引:0,他引:2  
青藏高原作为巨大的热源对亚洲气候、高原生态格局等产生重要的影响。但青藏高原的增温效应最初是20世纪50年代因其对亚洲气候的重大影响而被发现的,因此,大量的相关研究主要集中在高原夏季增温对气候的影响方面,而高原增温效应对高原地理生态格局的影响研究却非常少。利用收集到的气象台站观测数据、基于MODIS地表温度估算的青藏高原气温数据、林线数据和垂直带谱数据及DEM数据,通过对比分析高原内部与外围山区垂直带谱高度的变化及林线的分布规律,并以高原内部与边缘地区相同海拔高度上的气温差、最热月10℃等温线、15℃·月的温暖指数等温度指标来定量描述高原的增温效应及其对垂直带谱和林线的影响。研究结果表明:1由于青藏高原增温效应的影响,高原内部气温和生长季长度高于边缘地区,相同海拔高度上,高原内部各月气温比边缘地区高2~7℃;在4500 m高度上,高原内部各月气温比四川盆地高3.58℃(4月)到6.63℃(6月);最热月10℃等温线的海拔高度也从东部边缘(4000 m以下)向内部逐渐升高,在拉萨-改则一带则可出现在4600~5000 m的高度;15℃·月的温暖指数的海拔高度也从边缘向内部逐渐升高,在4500 m的海拔高度上,横断山区、高原南部和中部地区的温暖指数均能达到15℃·月以上,而其它边缘地区则都低于15℃·月。2青藏高原垂直带谱和林线的分布规律与增温效应的规律极其一致,即均从东部边缘向内部逐渐升高,表明增温效应抬升了高原内部垂直带谱的分布范围和高度:山地暗针叶林带的分布范围在高原内部比东部边缘地区高1000~1500 m;山地草甸带的分布范围在高原内部比东部边缘高出700~900 m;高原内部林线比外围地区高500~1000 m左右。最热月10℃等温线和15℃·月温暖指数的分布规律与林线分布规律一致,表明高原增温效应对垂直带谱的分布具有重要的影响。  相似文献   

12.
中国西部及邻区现代年降水时空分布初步研究   总被引:1,自引:0,他引:1  
传统上认为中国东部、西南以及青藏高原南部的降水主要受亚洲夏季风的控制,以夏季降水为主;而青藏高原北部以及新疆受西风带的影响,以冬、春季降水为主。最近一些地质记录和数值模拟结果显示,在万年时间尺度上新疆降水在地质历史时期的间冰期增加,和亚洲季风区类似。用TRMM 3B43降雨数据和气象台站观测降水数据,研究了中国西部及邻区现代年降水的时空分布。研究结果显示现代中国西部地区以夏季降水为主,中国边境线以西的中亚干旱区(介于25°45°N,58°45°N,58°70°E之间)以冬、春季降水为主。中国新疆的降水模式不同于西风带影响区,但其降水也不全是亚洲夏季风带来的。  相似文献   

13.
青藏高原对全球气候研究具有重要意义,而降水数据对水文、气象和生态等领域的研究也至关重要,且随着研究内容和尺度的变化,对高时空分辨率的历史降水数据的需求越发迫切。本文基于TRMM 3B43降水数据,采用随机森林算法,引入归一化植被指数(AVHRR NDVI)、高程(SRTM DEM)、坡度、坡向、经度、纬度6个地理因子,建立历史降水重建模型,获得1982-1997年分辨率为0.0833°的青藏高原年降水数据,然后根据比例系数法计算出月降水数据。为提高精度,利用站点数据对月降水数据进行校正。结果表明,该方法能简单有效地获得高时空分辨率的历史降水数据,决定系数R2大部分在0.4~0.9之间,平均值为0.6767,其中夏季效果最好,冬季效果最差;均方根误差RMSE和平均绝对误差MAE均在50 mm以下,RMSE均值为22.66 mm,MAE均值为15.97 mm;偏差Bias较小,基本在0.0~0.1之间。  相似文献   

14.
李芬  张建新  张荣 《中国沙漠》2015,35(5):1301-1311
受全球变化的影响,1958-2013年山西的气候呈现了新的变化特点。基于38个气象站最新气候资料,应用线性倾向估计、均值分布和EOF等方法,研究了山西降水的变化特征。结果表明:(1)山西年降水量平均为494.9 mm;年降水量382.8~637.2 mm,呈下降趋势,与全国降水的变化趋势一致,但下降幅度为12.6 mm/10a,显著高于全国水平。(2)春、夏、秋、冬季平均降水量分别为77.6、290.5、114.3、13.0 mm,除冬季平均降水量略微增加外,其他季节均呈下降趋势,这与华北地区一致。(3)春、夏季和冬季降水量年代际特征明显,但各有不同,春冬大部分时段波动为反向特征,近年来逐渐趋于同向;夏季是在显著下降趋势上叠加了年代际变化,且下降幅度最大达9.8 mm/10a;冬季波动最为剧烈,降水量1.1~28.3 mm,最多年是最少年的24.7倍。(4)年及四季降水的总体一致性是山西降水变化的主导特征,近56年大部分年及其四季降水都表现出一致的偏旱或偏涝,但高荷载区具有一定的区域性特点,年降水位于中东部、春季降水位于中南部、夏、秋、冬季降水位于南部。(5)年和夏季降水EOF分解各模态的收敛速度较慢,第一模态的方差贡献分别为33%和49%,前3个模态累计方差贡献分别为69%和70%;春、秋季和冬季EOF分解各模态收敛速度较快,第一模态的方差贡献分别高达65%、62%和74%,前3个模态累计方差贡献分别达到81%、84%和86%。  相似文献   

15.
西北地区东部可利用降水的时空变化特征   总被引:4,自引:1,他引:3       下载免费PDF全文
 利用西北地区东部91站1961-2009年间的实测气温降水资料,分别计算了该区水分资源各分量降水、蒸发及可利用降水,使用REOF等统计方法,整体分析了该区可利用降水的时空变化特征。结果表明:西北地区东部水分资源匮乏且年际变化大,水分资源各分量时空分布极不均匀;总体上各分量从该区东南部向西北部递减,呈南多北少特征,其中该区东南侧的陕南、陇南、六盘山区及青藏高原东部部分地区年降水量、蒸发量和可利用降水量分别在500、200和200 mm以上,年降水可利用率在30%~50%,可利用降水标准差达80~110 mm,而该区西部的河西走廊和青海西部的年降水量不足50 mm、年可利用降水量不到10 mm,年降水可利用率不足10%,可利用降水标准差在20 mm以下;各分量夏季最大,冬季最小,5~9月是该区主要降水和可利用降水的集中期;降水在水资源各分量中起决定性作用,因此降水的小幅变化导致可利用降水的大幅变化是降水稀少的西北地区东部可利用降水资源匮乏的主要原因,但气温变化造成的影响也不可忽视;西北地区东部5~9月可利用降水异常分布的局域特征明显,常出现陇南、河东、高原、河西走廊等4种异常分布特征。近50 a来,区内可利用降水总体呈东部减少(六盘山区及陇南区尤甚),西部增加的变化格局。  相似文献   

16.
中国第二次青藏高原综合科学考察的成果指出,青藏高原水体的固液结构正在失衡,越来越多的冰川、积雪等固态水向液态水转化,这使得青藏高原洪涝灾害的风险加剧。本文以青藏高原地区历史洪涝灾害记录资料为依据,分析青藏高原地区洪涝灾害的时空分布特征,并结合区域内气象站点的降水数据,采用临界雨量法估算青藏高原各流域的洪涝灾害临界雨量,最终得出以下结论:(1)青藏高原绝大多数的洪涝灾害事件均由降水引发,平均每年发生洪涝灾害超过30次,并且洪涝灾害的年发生频次呈上升趋势;(2)青藏高原的洪涝灾害的高发区主要在河湟谷地以及横断山区,次高发区位于藏南河谷区以及河湟谷地的外围区;(3)青藏高原洪涝灾害的临界雨量值在高原的南部最高,其次是高原的东部和东南部,高原中西部及北部最低。  相似文献   

17.
新疆大气可降水量的气候特征及其变化   总被引:13,自引:2,他引:11  
史玉光  孙照渤 《中国沙漠》2008,28(3):519-525
利用1961—2000年NCEP/NCAR再分析逐日资料,分析了新疆地区不同季节大气可降水量(APW)的气候分布特征和变化趋势。结果表明:新疆夏季APW小于季风区界限25 mm,从该角度表明新疆为非季风区。APW空间分布呈塔里木盆地和准格尔盆地为高值区,海拔高的阿勒泰山、天山和昆仑山为低值区。APW夏季最大,但小于同纬度东部季风区,春、秋次之,冬季最少,春、秋和冬季APW与同纬度东部季风接近。APW的地理分布与实际降水量分布相反,其最大(最小)区域却为降水量最小(最大)区,受西风带影响,新疆APW模态主要表现全疆一致变化,分布稳定,与降水模态分布差异性大有显著不同,且近40 a来无显著变化趋势,表明决定新疆降水差异的根本原因不在于水汽的多少,而是由降水产生的动力条件、水汽辐合和其他因素差异决定的。  相似文献   

18.
青藏高原的主要环境效应   总被引:35,自引:4,他引:31  
作为地球的"第三极",青藏高原越来越受到世界的关注,本文就青藏高原的环境效应问题进行了研究和探讨.青藏高原的隆起和抬升,形成了其自身独特的自然环境特征,促成了独特的高原季风系统,造就了中国现代季风格局,影响着全球气候的变化和亚洲植被格局的分布,导技致了亚洲干旱地带的北移和植被地带的不对称分布,形成了世界上著名的高原地带性植被格局.对中国东部、西北干旱区、亚洲的气候和植被格局乃至全球气候变化都具有深刻的影响.  相似文献   

19.
塔里木河流域TRMM降水数据精度评估   总被引:1,自引:1,他引:0  
沈彬  李新功 《干旱区地理》2015,38(4):703-712
利用塔里木河流域24个气象站降水数据,分析了2000-2013年TRMM多卫星降水数据(TRMM 3B43 v7)在塔里木河流域的适用性。检验结果表明:全年来看,TRMM数据对研究区所有站点的年均降水量拟合较好(R2=0.8846),流域内24个站点平均年降水量相对偏差为19.02%,其中60%的站点表现为TRMM年降水量高于地面实测年降水量;月降水方面,除个别站点(于田、且末、乌恰)较差外,大部分站点的拟合度都较好;就季节而言:春季拟合效果最好,夏、秋季的TRMM数据存在低估问题,而冬季则偏高估;流域降水量由东南向西北递增,并在西北部边缘地区增加较显著,形成一个相对丰水带;而向沙漠腹地方向延伸的降水量则呈减少趋势。同时流域最大降水区域在一年中变化存在一定的规律。  相似文献   

20.
青藏高原近40年来的降水变化特征   总被引:28,自引:7,他引:21  
张磊  缪启龙 《干旱区地理》2007,30(2):240-246
利用我国青藏高原地区的1961-2000年56个气象站的逐月降水资料,通过计算降水量的距平百分率,分析了青藏高原自1961至2000年以来降水量变化的趋势和1961-2000年以来各季降水量变化趋势,发现:青藏高原近40年来降水量呈增加趋势,降水量的线性增长率约为1.12mm/a。再将高原划分为四个季节,分析了各季40年来的降水量的变化情况得出:春季降水量年际变化较大,秋季降水量变化不明显。夏季降水量值较大而降水变化幅度较小,冬季降水量变化则与夏季相反。通过将青藏高原分为南北两个地区,分析了两个区的年降水量和四个季节的降水量的变化得出:高原南区1961-2000年降水量呈增加的趋势,降水量的线增长率为1.97 mm/a,春季和冬季降水量年际变化较大,夏季降水量变化不明显,秋季降水量略有增加;北区年降水量和夏季的降水量变化较小,秋季降水量的年际变化较大,冬季降水量变化最大。对青藏高原的南北两区用Mann-Kendall方法进行突变分析,显示高原南区分别在1978年和1994年发生突变,北区没有发现突变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号