首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological models at a monthly time‐scale are important tools for hydrological analysis, such as in impact assessment of climate change and regional water resources planning. Traditionally, monthly models adopt a conceptual, lumped‐parameter approach and cannot account for spatial variations of basin characteristics and climatic inputs. A large requirement for data often severely limits the utility of physically based, distributed‐parameter models. Based on the variable‐source‐area concept, we considered basin topography and rainfall to be two major factors whose spatial variations play a dominant role in runoff generation and developed a monthly model that is able to account for their influences in the spatial and temporal dynamics of water balance. As a hybrid of the Xinanjiang model and TOPMODEL, the new model is constructed by innovatively making use of the highly acclaimed simulation techniques in the two existing models. A major contribution of this model development study is to adopt the technique of implicit representation of soil moisture characteristics in the Xinanjiang model and use the TOPMODEL concept to integrate terrain variations into runoff simulation. Specifically, the TOPMODEL topographic index ln(a/tanβ) is converted into an index of relative difficulty in runoff generation (IRDG) and then the cumulative frequency distribution of IRDG is used to substitute the parabolic curve, which represents the spatial variation of soil storage capacity in the Xinanjiang model. Digital elevation model data play a key role in the modelling procedures on a geographical information system platform, including basin segmentation, estimation of rainfall for each sub‐basin and computation of terrain characteristics. Other monthly data for model calibration and validation are rainfall, pan evaporation and runoff. The new model has only three parameters to be estimated, i.e. watershed‐average field capacity WM, pan coefficient η and runoff generation coefficient α. Sensitivity analysis demonstrates that runoff is least sensitive to WM and, therefore, it can be determined by a prior estimation based on the climate and soil properties of the study basin. The other two parameters can be determined using optimization methods. Model testing was carried out in a number of nested sub‐basins of two watersheds (Yuanjiang River and Dongjiang River) in the humid region in central and southern China. Simulation results show that the model is capable of describing spatial and temporal variations of water balance components, including soil moisture content, evapotranspiration and runoff, over the watershed. With a minimal requirement for input data and parameterization, this terrain‐based distributed model is a valuable contribution to the ever‐advancing technology of hydrological modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Vahid Nourani  Akira Mano 《水文研究》2007,21(23):3173-3180
Rainfall–runoff modelling, as a surface hydrological process, on large‐scale data‐poor basins is currently a major topic of investigation that requires the model parameters be identified by using basin physical characteristics rather than calibration. This paper describes the application of the TOPMODEL framework accompanied by a kinematic wave model to the Karun River sub‐basins in southwestern Iran with just one conceptual parameter for calibration. ISLSCP1, HYDRO1K and Reynolds data sets are presented in a geographical information system and used as data sources for meteorological information, hydrological features and soil characteristics of the study area respectively. The results show that although the model developed can adequately predict flood runoff in the catchment with only one calibrated parameter, it is suggested that the effect of surface reservoirs be considered in the proposed model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Increasing pressure on the tropical environment requires a more thorough understanding of hydrological processes as part of reconciling the conflicting demands of economic development vis-à-vis sustainable land management. Using TOPMODEL, a physically based semi-distributed topohydrological model, we test its validity in modelling the stream flow dynamics (hydrograph) in a 1 ha tropical rainforest catchment in French Guiana. Another objective is through field validation of TOPMODEL to ascertain possible runoff generation mechanisms. The field validation of the temporal and spatial hydrodynamics across a rainfall–runoff event reveals that TOPMODEL may be suited for applications to this particular tropical rainforest environment; in fact, this is possibly the first successful application of such a model within the humid tropics. The main reasons why the model was successful are the presumed low hydraulic conductivities of the subsoil, coupled with the absence of an additional deep groundwater body, the contribution from which has caused difficulties in application of topographically, ‘physically’ based runoff models elsewhere in the humid tropics. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Two hydrological models with different structures and spatial capabilities are selected to simulate the runoff and actual evapotranspiration (AET) in Yingluoxia watershed, the upper reaches of Heihe River basin in northwest of China, to validate their performances in simulating hydrological processes. They are calibrated against the observed runoff at the watershed outlet (Yingluoxia station) for the period from 1990 to 1996 and validated for the period from 1997 to 2000. Results show that in terms of the simulated hydrograph against observations and the two selected objective functions, the conceptual, lumped Water And Snow balance MODeling system (WASMOD) with simple model structure could give the same, even better results than the semi‐distributed Soil and Water Assessment Tool (SWAT) with complex structure. Compared with other model applications to the watershed, simulation for monthly runoff made in this study seems better. With regard to AET, results calculated from both models are comparable as well. Both WASMOD and SWAT are proved to be suitable and satisfactory tools in simulating hydrological processes in the study area, although both of them have strengths and limitations in applications. WASMOD model may be one of the promising alternatives in hydrological modelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
High‐resolution topography, e.g. 1‐m digital elevation model (DEM) from light detection and ranging (LiDAR), offers opportunity for accurate identification of topographic features of relevance for hydrologic and geomorphologic modelling. Yet, the computation of some derived topographic properties, such as the topographic index (TI), is characterized by daunting challenges that hamper the full exploration of topography‐based models. Particular problems, for example, arise when a distributed (or semi‐distributed) rainfall–runoff model is applied to high‐resolution DEMs. Indeed, the characteristic dependency between landscape resolution and the computed TI distribution results in the formation of un‐physical, unconnected saturated zones, which in turn cause unrealistic representations of rainfall–runoff dynamics. In this study, we present a methodology based on a multi‐resolution wavelet transformation that, by means of a soft‐thresholding scheme on the wavelet coefficients, filters the noise of high‐resolution topography to construct regularized sets of locally smoother topography on which the TI is computed. While the methodology needs a somewhat arbitrary definition of the wavelet coefficients threshold, our study shows that when the information content (entropy) of the TI distribution is used as a filtering efficiency metric, a critical threshold automatically emerges in the landscape reconstruction. The methodology is demonstrated using 1‐m LiDAR data for the Elder Creek River basin in California. While the proposed case study uses a TOPMODEL approach, the methodology can be extended to different topography‐based models and is not limited to hydrological applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi‐variable and multi‐site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11‐year historical flow record (1990–2000); 1990–94 was used for calibration and 1995–2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash–Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub‐basins, and subcatchments). The use of an integrated multi‐variable and multi‐site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The MATLAB SIMULINK programming language is applied to the TOPMODEL rainfall–runoff model. SIMULINK requires a good recognition of model dynamics, which has been achieved here in a version based on the first TOPMODEL (Beven and Kirkby, 1979). Introducing the topographic index distribution in a vector form allows the generalization and simplification of the SIMULINK structure. The SIMULINK version of TOPMODEL has a very easy to understand graphical representation, which shows, in a straightforward way, all the physical interactions that take place in the model. Moreover, owing to its modular structure it is easy to add new and/or develop old submodels, depending on the available data and the goal of the modelling. In the example given here TOPMODEL was extended by two submodels representing the soil moisture and evaporation distribution in the catchment. Preparation of the data and presentation of the results is done in MATLAB. Discharge predictions and spatial patterns of hydrological response are demonstrated for a separate validation period. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Because the traditional Soil Conservation Service curve‐number (SCS‐CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS‐CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non‐point‐source pollution. The method presented here used the traditional SCS‐CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN–VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south‐eastern Australia to produce runoff‐probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN–VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS‐CN method, the distributed CN–VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN–VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS–CN method, while still adhering to the principles of VSA hydrology. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(3):513-525
Abstract

The Water Erosion Prediction Project (WEPP) model was calibrated and evaluated for estimation of runoff and sediment yield in the data-scarce conditions of the Indian Himalaya. The inputs derived from remote sensing and geographic information system technologies were combined in the WEPP modelling system to simulate surface runoff and sediment yield from the hilly Kaneli watershed. The model parameters were calibrated using measured data on runoff volumes and sediment yield. The calibrated model was validated by producing the monthly runoff and sediment yield simulations and comparing them with data that were not used in calibration. The model was also used to make surface runoff and sediment yield simulations for each of the individual watershed elements, comprising 18 hillslopes and seven channels, and the detailed monthly results for each are presented. Although, no field data on hillslope runoff and sediment yield are currently available for the validation of distributed results produced by the model, the present investigation has demonstrated clearly the applicability of the WEPP model in predicting hydrological variables in a data-scarce situation.  相似文献   

11.
Applications of hydrological models to northern wetland-dominated regions have been limited in the past to a few case studies on small basins employing ‘lumped’ models. Only recently have there been attempts to apply the grouped response unit (GRU) distributed modelling approach using terrain classifications to these same basins. This study summarizes recent efforts in applying such a model. For the purposes of implementing the GRU approach, terrain types that are hydrologically significant and characteristic to the wetland-dominated regime were successfully discriminated using a principal component analysis and a hybrid unsupervised/supervised classification technique on Landsat–Thematic Mapper imagery. The terrain classifications were then used as input into a distributed hydrological model for calibration and validation using recorded spring runoff events. Preliminary model applications and results are described. Calibration to a historic spring runoff event yielded an r2 value of 0.86. Model validation, however, yielded much poorer results. The problems of model applicability to this region and limitations of sparse data networks are highlighted. The need for more field research in this type of hydrological regime, and associated improvements to the model parameter set are also identified.  相似文献   

12.
In order to expand the application range of the classic Topographic Index model (TOPMODEL) and develop a more appropriate submodel of hydrological processes for use in the land surface model, two types of TOPMODEL are investigated, one with saturated hydraulic conductivity change with depth obeying exponential law (classical e-TOPMODEL or e-TOPMODEL for short) and the other obeying general power law (general p-TOPMODEL or p-TOPMODEL for short). Using observation date in the Suomo River catchment located in the upper reaches of the Yangtze River, the sensitivity study of the p-TOPMODEL was conducted and the simulated results from the model were examined and evaluated first, and then the results were compared with the results from the e-TOPMODEL to find the similarities and differences between the two types of models. The main conclusions obtained from the above studies are (1) topographic index and its distribution derived from the p-TOPPMODEL for the Suomo Basin are sensitive to changes of parameter n and m; (2) changes of n and m have impacts on the simulation results of various hydrological components (such as daily runoff, monthly averaged runoff, monthly averaged surface runoff and subsurface runoff), but have the weaker impacts on forty-year averaged total runoff; and (3) for the same value of m, the simulated results of e-TOPMODEL display higher surface runoff and lower subsurface runoff than the general p-TOPMODEL does but multi-year averaged total runoffs produced from the two types of TOPMODEL show insignificant difference. The differences between the two types of models indicate that it is necessary to pay close attention to correct selection from different hydrological models for use in land surface model development. The result mentioned above is useful to provide some referential information for the model selection.  相似文献   

13.
The Generalised Likelihood Uncertainty Estimation (GLUE) methodology is used to investigate how distributed water table observations modify simulation and parameter uncertainty for the hydrological model TOPMODEL, applied to the Sæternbekken Minifelt catchment in Norway. Errors in simulating observed flows, continuously-logged borehole water levels and more extensive, spatially distributed water table depths are combined using Bayes' equation within a `likelihood measure' L. It is shown how the distributions of L for the TOPMODEL parameters change as the different types of observed data are considered. These distributions are also used to construct corresponding simulation uncertainty bounds for flows, borehole water levels, and water table depths within the spatially-extensive piezometer network. Qualitatively wide uncertainty bounds for water table simulations are thought to be consistent with the simplified nature of the distributed model.  相似文献   

14.
An extension of TOPMODEL was developed for rainfall–runoff simulation in agricultural watersheds equipped with tile drains. Tile drain functions are incorporated into the framework of TOPMODEL. Nine possible flow generation scenarios are suggested for tile-drained watersheds and applied in the modelling procedure. In the model development, two methods of simulation of the flow in the unsaturated zone were compared: the traditional, physically based storage approach and a new approach using a transfer function. A regionalized sensitivity analysis was used to determine the sensitivity of parameters and to compare the behaviour of the transfer function with that of the simple storage-related formulation. The number of accepted combinations of parameter values, on average, was higher for the transfer function approach than when using a Monte Carlo method of parameter estimation. Since the rainfall–runoff response pattern tends to vary seasonally, seven events distributed throughout a year were used in the sensitivity analysis to investigate the seasonal variation of the hydrological characteristics. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Lihua Xiong  Shenglian Guo 《水文研究》2004,18(10):1823-1836
Effects of the catchment runoff coefficient on the performance of TOPMODEL in simulating catchment rainfall–runoff relationships are investigated in this paper, with an aim to improve TOPMODEL's simulation efficiency in catchments with a low runoff coefficient. Application of TOPMODEL in the semi‐arid Yihe catchment, with an area of 2623 km2 in the Yellow River basin of China, produced a Nash–Sutcliffe model efficiency of about 80%. To investigate how the catchment runoff coefficient affects the performance of TOPMODEL, the whole observed discharge series of the Yihe catchment is multiplied with a larger‐than‐unity scale factor to obtain an amplified discharge series. Then TOPMODEL is used to simulate the amplified discharge series given the original rainfall and evaporation data. For a set of different scale factors, TOPMODEL efficiency is plotted against the corresponding catchment runoff coefficient and it is found that the efficiency of TOPMODEL increases with the increasing catchment runoff coefficient before reaching a peak (e.g. about 90%); after the peak, however, the efficiency of TOPMODEL decreases with the increasing catchment runoff coefficient. Based on this finding, an approach called the discharge amplification method is proposed to enhance the simulation efficiency of TOPMODEL in rainfall–runoff modelling in catchments with a low runoff coefficient. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

This study modified the BTOPMC (Block-wise TOPMODEL with the Muskingum-Cunge routing method) distributed hydrological model to make it applicable to semi-arid regions by introducing an adjustment coefficient for infiltration capacity of the soil surface, and then applied it to two catchments above the dams in the Karun River basin, located in semi-arid mountain ranges in Iran. The application results indicated that the introduced modification improved the model performance for simulating flood peaks generated by infiltration excess overland runoff at a daily time scale. The modified BTOPMC was found to fulfil the need to reproduce important signatures of basin hydrology for water resource development, such as annual runoff, seasonal runoff, low flows and flood flows. However, it was also very clear that effective model use was significantly constrained by the scarcity of ground-gauged precipitation data. Considerable efforts to improve the precipitation data acquisition should precede water resource development planning.

Editor D. Koutsoyiannis  相似文献   

20.
The need for accurate hydrologic analysis and rainfall–runoff modelling tools has been rapidly increasing because of the growing complexity of operational hydrologic and hydraulic problems associated with population growth, rapid urbanization and expansion of agricultural activities. Given the recent advances in remote sensing of physiographic features and the availability of near real‐time precipitation products, rainfall–runoff models are expected to predict runoff more accurately. In this study, we compare the performance and implementation requirements of two rainfall–runoff models for a semi‐urbanized watershed. One is a semi‐distributed conceptual model, the Hydrologic Engineering Center‐Hydrologic Modelling System (HEC‐HMS). The other is a physically based, distributed‐parameter hydrologic model, the Gridded Surface Subsurface Hydrologic Analysis (GSSHA). Four flood events that took place on the Leon Creek watershed, a sub‐watershed of the San Antonio River basin in Texas, were used in this study. The two models were driven by the Multisensor Precipitation Estimator radar products. One event (in 2007) was used for HEC‐HMS and GSSHA calibrations. Two events (in 2004 and 2007) were used for further calibration of HEC‐HMS. Three events (in 2002, 2004 and 2010) were used for model validation. In general, the physically based, distributed‐parameter model performed better than the conceptual model and required less calibration. The two models were prepared with the same minimum required input data, and the effort required to build the two models did not differ substantially. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号