共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial patterns of N dynamics in soil were evaluated within two small forested watersheds in Japan. These two watersheds were characterized by steep slopes (>30°) and high stream NO−3 drainage rates (8·4 to 25·1 kg N ha−1 yr−1) that were greater than bulk precipitation N input rates (7·5 to 13·5 kg N ha−1 yr−1). Higher rates of nitrification potential at near-stream zones were reflected in greater NO−3 contents for soil at the near-stream zones compared with ridge zones. Both stream discharge rates and NO−3 concentrations in deep unsaturated soil at the near-stream zones were positively correlated to NO−3 concentrations in stream water. These relationships, together with high soil NO−3 contents at the near-stream zones, suggest that the near-stream zone was an important source of NO−3 to stream water. Nitrate flux from these near-stream zones was also related to the drainage of cations (K+, Ca2+ and Mg2+). The steep slope of the watersheds resulted in small saturated areas that contributed to the high NO−3 production (high nitrification rates) in the near-stream zone. © 1998 John Wiley & Sons, Ltd. 相似文献
2.
Elyas Hayati Ehsan Abdi Mohsen Mohseni Saravi John L. Nieber Baris Majnounian Giovanni B. Chirico 《水文研究》2018,32(16):2570-2583
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season. 相似文献
3.
Ryan T. Bailey Tyler C. Wible Mazdak Arabi Rosemary M. Records Jeffrey Ditty 《水文研究》2016,30(23):4420-4433
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
The Buck Creek-Boreas River Adirondack Watershed Monitoring Program, located in the Adirondack region of New York State, United States, combines the monitoring of headwater streams, soils, and vegetation based on a watershed design. Continuous monitoring of six watersheds is linked to the sampling of more than 400 additional Adirondack streams between 2003 and 2019 for chemical analysis of 14 constituents throughout the highly valued Adirondack ecoregion that covers an area of more than 24 000 km2. Much of this landscape has a low capacity for acid buffering, but due to spatial variation in geologic features, some areas are moderately to well acid buffered. This program includes data that extends back to the early 1980s and is ongoing. The focus of the program is on the watersheds of headwater Adirondack streams. Soil, vegetation and stream data are used to better understand environmental effects on the linkages of these ecosystem components. Documentation of the long-term responses of Adirondack ecosystems to environmental disturbances such as acid rain, climate change and other unforeseen factors is the primary objective of the program. 相似文献
5.
Three techniques for obtaining soil water solutions (gravitational and matrical waters extracted using both in situ tension lysimeters and in vitro pressure chambers) and their later chemical analysis were performed in order to know the evolution of the soil‐solution composition when water moves down through the soil, from the Ah soil horizon to the BwC‐ or C‐horizons of forest soils located in western Spain. Additionally, ion concentrations and water volumes of input waters to soil (canopy washout) and exported waters (drainage solutions from C‐horizons) were determined to establish the net balance of solutes in order to determine the rates of leaching or retention of ions. A generalized process of sorption or retention of most components (even Cl?) was observed, from the soil surface to the C‐horizon, in both gravitational and matrical waters, with H4SiO4, Mn2+, Na+, and SO42? being the net exported components from the soil through the groundwater. These results enhance the role of the recycling effect in these forest soils. The net percentages of elements retained in these forest soils, considering the inputs and the outputs balance, were 68% K+, 85% Ca2+, 58% Mg2+, 7% Al3+, 5% Fe3+, 34% Zn2+, 57% Cl?, and 20% NO3?, and about 75% of dissolved organic carbon was mineralized. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
6.
Zhao Zhang Fulu Tao Peijun Shi Wei Xu Yu Sun Takehiko Fukushima Yuichi Onda 《水文研究》2010,24(20):2960-2970
A flush can be defined as stream chemical exhibiting higher concentrations during the prophase of a storm event at an event scale, or exhibiting progressively lower concentrations during several successive storms at a seasonal scale. Investigating the flush characteristics of chemical runoff from forested watersheds is important and helpful to understand the chemical dynamics as well as to design a sampling schedule strategy during storm events. Here, three parameters describing the flush characteristic are quantified and the flush characteristics of chemicals from four Japanese forested watersheds (Mie, Kochi, Nagano and Tokyo) were investigated at both event and seasonal levels. We found that the characteristics of the flush were complicated, and depended on the constituents of the hydrochemistry, climate and runoff quality. Generally, the flush occurs more readily for particulate components than for those in solution; the flush on nitrate‐nitrogen is weaker in regions of nitrogen saturation, such as Nagano and Tokyo, than in Mie and Kochi. Rainfall feature was the main factor controlling the flush of particulate components. However, the source available in a watershed plays a main role on the flushes of dissolve chemicals. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
A study was undertaken during the winter of 1990–1991 in a small (3.7 ha) Canadian Shield catchment to examine the hydrological and hydrochemical response during rain-on-snow events. The results are presented of two large (37.9 and 34.6 mm) rain-on-snow events occurring in early and late March 1991. Peak and total runoff and the groundwater response from the two events are significantly different. Hydrological data indicate that these differences can be attributed to a combination of meteorological (temperature) and physical conditions (antecedent snowpack ripeness, soil moisture and groundwater levels). An immature snowpack (low temperature and density) combined with low antecedent soil moisture conditions significantly reduced the magnitude of the net hydrological input and runoff from the catchment during the early March event, whereas a more mature snowpack and high antecedent soil moisture conditions led to a large runoff event during late March. During both rain-on-snow events a significant portion of the pre-event snowpack chemical load was lost. Based on the maximum snowpack chemical load measured before the events, the two large rain-on-snow events and a brief mid-March warm period during which there were two much smaller rain-on-snow events removed 78% of the hydrogen ion and 63% of the sulphate and nitrate load from the snowpack, while only reducing snowpack water equivalence by 7%. A two-component (rain and snowmelt) isotopic (δ18O SMOW %0) separation of snowmelt lysimeter water during the two events indicated that snowmelt was an important (50 and 65%, respectively) water source available for infiltration and runoff at the snow-soil interface. Considering the high hydrogen ion loadings to the catchment during these two events (3.3 and 3.0 mequiv.m?2, respectively) streamflow pH was not significantly reduced due to an increase in the discharge of well-buffered groundwater. A two-component isotopic hydrograph separation of peak stream discharge during the 2–3 March event indicated that 75% of the total flow was groundwater. In mid-latitude acid-sensitive catchments, winter rain-on-snow events are an important hydrological occurrence due to their ability to elute much of the chemical load (H+, SO4, NO3) from the snowpack before the onset of spring melt when the maximum annual hydrological input typically occurs. 相似文献
8.
John P. Gannon Kevin J. McGuire Scott W. Bailey Rebecca R. Bourgault Donald S. Ross 《水文研究》2017,31(20):3568-3579
Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table fluctuations in response to precipitation; however, observed variations in soil morphology also occurred above the maximum height of observed saturation. Variations in unsaturated fluxes have been hypothesized to explain differences in soil horizon thickness and presence/absence of specific horizons but have not been explicitly investigated. We examined tensiometer and shallow groundwater well records to identify differences in unsaturated water fluxes among podzols that show distinct morphological and chemical differences. The lack of vertical hydraulic gradients at the study sites suggests that lateral unsaturated flow occurs in several of the soil units. We propose that the variations in soil horizon thickness and presence/absence observed at the site are due in part to slope‐parallel water flux in the unsaturated portion of the solum. In addition, unsaturated flow may be involved in the translocation of spodic material that primes those areas to contribute water with distinct chemistry to the stream network and represents a potential source/sink of organometallic compounds in the landscape. 相似文献
9.
Laura Toran Jonathan E. Nyquist Allison C. Fang Robert J. Ryan Donald O. Rosenberry 《水文研究》2013,27(10):1411-1425
Time‐lapse geophysical surveys can map lingering hyporheic storage by detecting changes in response to saline tracer. Tracer tests were conducted in Crabby Creek, an urban stream outside Philadelphia, to examine the influence of stream restoration structures and variable sediment thickness. We compared electrical resistivity surveys with extensive well sampling (57 wells) in two 13.5‐m‐long reaches, each with a step drop created by a J‐hook. The two step drops varied in tracer behaviour, based on both the well data and the geophysical data. The well data showed more variation in arrival time where the streambed sediment was thick and was more uniform where sediment was thin. The resistivity in the reach with thin sediment showed lingering tracer in the hyporheic zone both upstream and downstream from the J‐hook. In the second reach where the sediment was thicker, the lingering tracer in the hyporheic zone was more extensive downstream from the J‐hook. The contrasting results between the two reaches from both methods suggested that sediments influenced hyporheic exchange more than the step at this location. Resistivity inversion differed from well data in both reaches in that it showed evidence for tracer after well samples had returned to background, mapping lingering tracer either upstream or downstream of a step. We conclude that resistivity surveys may become an important tool for hyporheic zone characterization because they provide information on the extent of slow moving fluids in the hyporheic zone, which have the potential to enhance chemical reactions. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
The purposes of this study are to identify the bias of applying the analysis of a log–log plot of baseflow and to derive an equation to describe successive regional mean baseflow. The function ?dQ/dt = a Qb has been used to describe baseflow in many studies that obtain the values of a and b from the log–log plot. According to analysis in this study, the value of 1 can be assigned to b in two boundary conditions, but the parameter a is proved to be related to the depth of water table and starting time of recession and thus different values of a may be found for different recession events. This paper points out that no single regression line can be obtained by plotting all baseflow data on a log–log diagram. Instead, there should be parallel lines, and each for a recession event. It implies that no single set of parameters a and b can be applied to predict baseflow. Thus, a new equation describing the relationship between three successive mean baseflows was derived in this study. The bias in the analysis of the log–log plot and the ability of the derived equation to predict baseflow were verified for five watersheds in Taiwan. Results indicate that the formula of mean baseflow prediction can provide reasonable estimates of flows with a leading time of 6 days. Furthermore, stream flows of the Tonkawa creek watershed in USA were used to verify that using average flows can result in better predictions than using instantaneous flows. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
11.
Thomas C. Winter Donald C. Buso Patricia C. Shattuck Phillip T. Harte Donald A. Vroblesky Daniel J. Goode 《水文研究》2008,22(1):21-32
The west watershed of Mirror Lake in the White Mountains of New Hampshire contains several terraces that are at different altitudes and have different geologic compositions. The lowest terrace (FSE) has 5 m of sand overlying 9 m of till. The two next successively higher terraces (FS2 and FS1) consist entirely of sand and have maximum thicknesses of about 7 m. A fourth, and highest, terrace (FS3) lies in the north‐west watershed directly adjacent to the west watershed. This highest terrace has 2 m of sand overlying 8 m of till. All terraces overlie fractured crystalline bedrock. Numerical models of hypothetical settings simulating ground‐water flow in a mountainside indicated that the presence of a terrace can cause local ground‐water flow cells to develop, and that the flow patterns differ based on the geologic composition of the terrace. For example, more ground water moves from the bedrock to the glacial deposits beneath terraces consisting completely of sand than beneath terraces that have sand underlain by till. Field data from Mirror Lake watersheds corroborate the numerical experiments. The geology of the terraces also affects how the stream draining the west watershed interacts with ground water. The stream turns part way down the mountainside and passes between the two sand terraces, essentially transecting the movement of ground water down the valley side. Transects of water‐table wells were installed across the stream's riparian zone above, between, and below the sand terraces. Head data from these wells indicated that the stream gains ground water on both sides above and below the sand terraces. However, where it flows between the sand terraces the stream gains ground water on its uphill side and loses water on its downhill side. Biogeochemical processes in the riparian zone of the flow‐through reach have resulted in anoxic ground water beneath the lower sand terrace. Results of this study indicate that it is useful to understand patterns of ground‐water flow in order to fully understand the flow and chemical characteristics of both ground water and surface water in mountainous terrain. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
ABSTRACTThe water balance dynamics and runoff components of a tropical forested catchment (46?km2) on the southwestern Pacific coast of Nicaragua were studied combining hydrometry, geological characterization and hydrochemical and isotopic tracers (three-component hydrograph separation). The climatic water balance was estimated for 2010/11, 2011/12 and 2012/13 with net values of 811?mm year-1, 782?mm year-1 and –447?mm year-1, respectively. Runoff components were studied at different spatial and temporal scales, demonstrating that different sources and temporal contributions are controlled by dominant landscape elements and antecedent rainfall. In forested sub-catchments, permeable soils, stratigraphy and steep slopes favour subsurface stormflow generation contributing 50% and 53% to total discharge. At catchment scale, landscape elements such as smooth slopes, wide valleys, deeper soils and water table allow groundwater recharge during rainfall events. Groundwater dominates the hydrograph (50% of total discharge) under dry prior conditions. However, low soil infiltration capacity generates a larger surface runoff component (42%) under wet prior conditions which dominates total discharge. Our results show that forested areas are important to reduce surface runoff and thus soil degradation, which is relevant for the design of water management plans.
Editor D. Koutsoyiannis Associate editor D. Gerten 相似文献
13.
Stable isotope data are presented for precipitation, spring and stream water in a headwater catchments in the Indian Lesser Himalaya. Isotopic contents of phreatic groundwater followed the local meteoric water line and showed minimal alteration by evaporation, suggesting fast recharge. Mean isotopic values for springs and the stream were close to the weighted annual mean for precipitation, indicating recharge was in synchrony with seasonal rainfall distribution. Precipitation exhibited isotopic declines of ?0.6‰ and ?0.2‰ δ18O per 100 m rise in elevation in July and August (monsoon), respectively. The time lag of one month between rainfall and spring discharge, combined with the isotopic lapse rate indicated a recharge elevation of 70–165 m above the spring outflow point, implying the water originated within the catchment. Time series of electrical conductivity and temperature of spring, seepage and stream waters confirmed the rapid recharge and limited storage capacity of the shallow aquifers. 相似文献
14.
Peter S. Murdoch Douglas A. Burns Michael R. McHale Jason Siemion Barry P. Baldigo Gregory B. Lawrence Scott D. George Michael R. Antidormi Donald B. Bonville 《水文研究》2021,35(10):e14394
This data note describes the Biscuit Brook and Neversink Reservoir watershed long-term monitoring data that includes: 1) stream discharge, (1983–2020 for Biscuit Brook and 1937–2020 for the Neversink Reservoir watershed), 2) stream water chemistry, 1983–2020, at 4 stations, 3) fish survey data from 16 locations in the watershed 1990–2019, 4) soil chemistry data from 2 headwater sub-watersheds, 1993–2012 and 5) periodic stream water chemistry sampling data from 364 locations throughout the watershed, 1983–2020. The Neversink Reservoir watershed in the Catskill Mountains of New York, USA drains an area of 172.5 km2. The watershed feeds one of six reservoirs in New York City's West of Hudson water supply, which accounts for about 90% of the city's water supply. Biscuit Brook is a 9.63 km2 tributary sub-watershed within the Neversink Reservoir watershed. 相似文献
15.
New methods for obtaining and quantifying spatially distributed subsurface moisture are a high research priority in process hydrology. We use simple linear regression analyses to compare terrain electrical conductivity measurements (EC) derived from multiple electromagnetic induction (EMI) frequencies to a distributed grid of water‐table depth and soil‐moisture measurements in a highly instrumented 50 by 50 m hillslope in Putnam County, New York. Two null hypotheses were tested: H0(1), there is no relationship between water table depth and EC; H0(2), there is no relationship between soil moisture levels and EC. We reject both these hypotheses. Regression analysis indicates that EC measurements from the low frequency EM31 meter with a vertical dipole orientation could explain over 80% of the variation in water‐table depth across the test hillslope. Despite zeroing and sensitivity problems encountered with the high frequency EM38, EC measurements could explain over 70% of the gravimetrically determined soil‐moisture variance. The use of simple moisture retrieval algorithms, which combined EC measurements from the EM31 and EM38 meters in both their vertical and horizontal orientations, helped increase the r2 coefficients slightly. This first hillslope hydrological analysis of EMI technology in this way suggests that it may be a promising method for the collection of a large number of distributed soilwater and groundwater depth measurements with a reasonable degree of accuracy. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
16.
The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95·5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late‐lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion‐rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0·25 m of unsaturated soil. The Na+ and Cl? were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt‐water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late‐lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in‐stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater chemistry. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
Florian Kobierska Tobias Jonas Nena Griessinger Christian Hauck Stephan Huxol Stefano M. Bernasconi 《水文研究》2015,29(6):817-827
We implemented multiple independent field techniques to determine the direction and velocity of groundwater flow at a specific stream reach in a glacier forefield. Time‐lapse experiments were conducted using two electrical resistivity tomography (ERT) lines installed in a cross pattern. A circular array of groundwater tubes was also installed to monitor groundwater flow via discrete salt injections. Both inter‐borehole and ERT results confirmed this stream section as a losing reach and enabled quantification of the flow direction. Both techniques yielded advection velocities varying between 5.7 and 21.8 m/day. Estimates of groundwater flow direction and velocity indicated that groundwater infiltrates from the stream nearby and not from the adjacent lateral moraine. Groundwater age estimated from radon concentration measurements supported this hypothesis. Despite uncertainties inherent to each of the methods deployed, the combination of multiple field techniques allowed drawing consistent conclusions about local groundwater flow. We thus regard our multi‐method approach as a reliable way to characterize the two‐dimensional groundwater flow at sites where more invasive groundwater investigation techniques are difficult to carry out and local heterogeneities can make single measurements unreliable. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
Chloride is a major anion in soil water and its concentration rises essentially as a function of evapotranspiration. Compared to herbaceous vegetation, high transpiration rates are measured for isolated trees, shelterbelts or hedgerows. This article deals with the influence of a tree hedge on the soil and groundwater Cl? concentrations and the possibility of using Cl? as an indicator of transpiration and water movements near the tree rows. Cl? concentrations were measured over 1 year at different depths in the unsaturated zone and in the groundwater along a transect intersecting a bottomland oak hedge. We observed a strong spatial heterogeneity of Cl? concentrations, with very high values up to 2 g l?1 in the unsaturated zone and 1·2 g l?1 in the upper part of the groundwater. This contrasts with the low and homogeneous concentrations (60–70 mg l?1) in the deeper part of the groundwater. Cl? accumulation in the unsaturated zone at the end of the vegetation season allows us to identify the active root zone extension of trees. In winter, upslope of the tree row, downwards leaching partly renews the soil solution in the root zone, while the slow water movement under the trees or farther downslope results in Cl? accumulation and leads to a salinization of the soil and groundwater. This salinization is of the same order as experimental conditions produce negative effects on oak seedlings. The measurement of Cl? concentrations in the unsaturated zone under tree rows at the end of the vegetation season would indicate whether certain topographic, pedological or climatic conditions are likely to favour a strong salinization of the soil, as observed in the present study. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
Transmission losses from the beds of ephemeral streams are thought to be a widespread mechanism of groundwater recharge in arid and semi-arid regions and support a range of dryland hydro-ecology. Dryland areas cover ~40% of the Earth's land surface and groundwater resources are often the main source of freshwater. It is commonly assumed that where an unsaturated zone exists beneath a stream, the interaction between surface water and groundwater is unidirectional and that groundwater does not exert a significant feedback on transmission losses. To test this assumption, we conducted a series of numerical model experiments using idealised two-dimensional channel-transects to assess the sensitivity and degree of interaction between surface and groundwater for typical dryland ephemeral stream geometries, hydraulic properties and flow regimes. We broaden the use of the term ‘stream–aquifer interactions’ to refer not just to fluxes and water exchange but also to include the ways in which the stream and aquifer have a hydraulic effect on one another. Our results indicate that deep water tables, less frequent streamflow events and/or highly permeable sediments tend to result in limited bi-directional hydraulic interaction between the stream and the underlying groundwater which, in turn, results in high amounts of infiltration. With shallower initial depth to the water table, higher streamflow frequency and/or lower bed permeability, greater ‘negative’ hydraulic feedback from the groundwater occurs which in turn results in lower amounts of infiltration. Streambed losses eventually reach a constant rate as initial water table depths increase, but only at depths of 10s of metres in some of the cases studied. Our results highlight that bi-directional stream–aquifer hydraulic interactions in ephemeral streams may be more widespread than is commonly assumed. We conclude that groundwater and surface water should be considered as connected systems for water resource management unless there is clear evidence to the contrary. 相似文献
20.
In many agricultural areas, hedgerows give rise to strong expectations of reducing the inputs of excess nitrate to the groundwater and rivers. This study aims to analyse the spatial and seasonal influences of a hedgerow on nitrate dynamics in the soil and groundwater. Nitrate (NO3?) and chloride (Cl?) concentrations were measured with spatially dense sampling in the unsaturated soil and in the groundwater along a transect intersecting a bottomland oak (Quercus rubor) hedgerow after the growing season and during the dormant season. We explain NO3? dynamics by using Cl? as an index of tree‐root extension and water transfer. At the end of the growing season, NO3? is entirely absorbed by the trees over a large and deep volume corresponding to the rooting zone, where, in contrast Cl? is highly concentrated due to root exclusion. However, these observed patterns in the soil have no influence on the deep groundwater composition at this season. During the dormant season, water transfer processes feeding the shallow groundwater layer are different upslope and downslope from the hedgerow in relation to the thickness of the unsaturated zone. Upslope, the shallow groundwater is fed by rainwater infiltration through the soil which favours Cl? dilution. Right under the hedge and downslope, the rapid ascent of the groundwater near the ground surface prevents rainwater input and Cl? dilution. Under the hedgerow the highest concentrations of Cl? coincide with the absence of NO3? in the shallow groundwater layer and with high concentrations of dissolved organic carbon. The absence of NO3? during the dormant season seems to be due to denitrification in the hedgerow rooting zone when it is rapidly saturated by groundwater. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献