首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The spatial and temporal variations of precipitation in the desert region of China (DRC) from 1951 to 2005 were investigated using a rotated empirical orthogonal function (REOF), the precipitation concentration index (PCI) and the Mann–Kendall trend test method (M‐K method). In addition, the association between variation patterns of precipitation and large‐scale circulation were also explored using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The results indicated that the spatial pattern of precipitation was primarily the local climate effect significant type, with the first three EOFs explaining a total of 55·3% of the variance, and the large‐scale climate system effect type, which explained 9·8% of the variance. Prior to the 1970s, the East Asian summer monsoon was stronger, which resulted in abundant precipitation in the Inner Mongolia region. Conversely, the climate of the Xinjiang region was controlled by westerly circulation and had lower precipitation. However, this situation has been reversed since the 1980s. It is predicted that precipitation will decrease by 15–40 and 0–10 mm/year in the Inner Mongolia plateau and southern Xinjiang, respectively, whereas it will likely increase by 10–40 mm/year in northern Xinjiang. Additionally, 58–62% of the annual rainfall occurred during summer in the DRC, with precipitation increasing during spring and summer and decreasing in winter. The intra‐annual precipitation is becoming uniform, but the inter‐annual variability in precipitation has been increasing in the western portions of the DRC. The probability of precipitation during the study period increased by 30% and 22·2% in the extreme‐arid zones and arid zones, respectively. Conversely, the probability of precipitation during the study period decreased by 18·5% and 37·5% in the semi‐arid zones and semi‐wet zones, respectively. It is predicted that the northwest portion of the DRC will become warmer and wetter, while the central portion will become warmer and drier and the northeast portion will be subjected to drought. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The advantage of an irrigation system is that experiments of varying precipitation duration and intensity can be performed in a controlled situation. An effective portable irrigation system is described for use in experimental plot hillslope and wetland runoff studies. The system consists of four parts:(1) a water pump; (2) a tracer reservoir; (3) a chemical feed pump; and (4) distribution hoses. Relatively uniform water application is achieved by a series of manual valves controlling water flow from the main carrier hose to the distribution hoses. The irrigation system materials are inexpensive and installation and operation costs are minor. The system was used to study runoff generation from a small‐saturated area in a spring‐fed swamp for a range of precipitation intensities and durations. The irrigation system applied a maximum intensity of 14·0mm h?1, for a maximum duration of 180 min, to a 190m2 area. This range of application incorporated all storms up to a one in three year event. The variance of the tracer load was almost three times greater for natural (60%) than with the irrigation system (22%). The irrigation system reduced the uncertainty in the pre‐event water fraction (using a two‐component hydrograph separation) from 3·4% in natural events to only 0·7%. The irrigation system design, operation, calibration and cost are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
On the basis of the mean air temperature, precipitation, sunshine duration and pan evaporation at 23 meteorological stations in the headwater catchment of the Yellow River basin from 1960 to 2001, the long‐term monotonic trend and abrupt changes for major climate variables have been investigated. The plausible monotonic trend of annual climatic time series are detected using a non‐parametric method. The abrupt changes have been investigated in terms of a 5 year moving averaged annual series, using the moving t‐test (MTT) method, Yamamoto method and Mann–Kendall method. The results showed that the annual air temperature has increased by 0·80 °C in the headwater catchment of the Yellow River basin during the past 42 years. One obvious cold period and one warm period were detected. The warmest centre was located in the northern part of the basin. The long‐term trend for annual precipitation was not significant during the same period, but a dry tendency was detected. According to the Kendall slope values, the declining centre for annual precipitation was located in the eastern part and the centre of the study area. The long‐term monotonic trend for annual sunshine duration and pan evaporation were negative. The average Kendall slopes are ? 29·96 h/10 yr and ? 39·63 mm/10 yr, respectively. The tests for abrupt changes using MTT and Yamamoto methods show similar results. Abrupt changes occurred in the mid 1980s for temperature, in the late 1980s for precipitation and in the early 1980s for sunshine duration and pan evaporation. It can be seen that the abrupt changes really happened in the 1980s for the climate variables. Different results are shown using the Mann–Kendall method. Both the abrupt changes of temperature and precipitation took place in the early 1990s, and that of pan evaporation occurred in the 1960s. The only abrupt change in sunshine duration happened during the similar period (in the 1980s) with the results detected by the MTT and Yamamoto methods. The abrupt changes which occurred in the 1990s and 1960s are not detectable using the MTT and Yamamoto methods because of the data limitation. However, the results tested by the MTT and Yamamoto methods exhibited great consistency. Some of the reasons may be due to the similar principles for these two methods. Different methods testing the abrupt climatic changes have their own merits and limitations and should be compared based on their own assumption and applicable conditions when they are used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Seasonal and event variations in stream channel area and the contributions of channel precipitation to stream flow were studied on a 106‐ha forested headwater catchment in central Pennsylvania. Variations in stream velocity, flowing stream surface width and widths of near‐stream saturated areas were periodically monitored at 61 channel transects over a two‐year period. The area of flowing stream surface and near‐stream saturated zones combined, ranged from 0·07% of basin area during summer low flows to 0·60% of total basin area during peak storm flows. Near‐stream saturated zones generally represented about half of the total channel area available to intercept throughfall and generate channel precipitation. Contributions of routed channel precipitation from the flowing stream surface and near‐stream zones, calculated using the Penn State Runoff Model (PSRM, v. 95), represented from 1·1 to 6·4% of total stream flow and 2·5–29% of total storm flow (stream flow–antecedent baseflow) during the six events. Areas of near‐stream saturated zones contributed 35–52% of the computed channel precipitation during the six events. Channel precipitation contributed a higher percentage of stream flow for events with low antecedent baseflow when storm flow generated by subsurface sources was relatively low. Expansion of channel area and consequent increases in volumes of channel precipitation with flow increases during events was non‐linear, with greater rates of change occurring at lower than at higher discharge rates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
According to the precipitation and δ18O data obtained during the GEWEX Asian Monsoon Experiment–Tibet Intensive Observation Period, based on the knowledge that δ18O is lower in precipitation formed from ocean air mass vapour than that from local evaporation vapour, the water vapour sources can be identified from the δ18O values in precipitation. We attempt to give the identification criterion of δ18O values in precipitation. The threshold values chosen to distinguish between ocean and local sources are δ18O < ?20‰ and δ18O > ?13‰ respectively. According to this criterion, the proportion of local evaporation‐formed precipitation and ocean air‐mass‐formed precipitation in total precipitation was estimated. The average value of precipitation at three sites (NODA, Amdo and AQB) is 249·76 mm. Among this, precipitation formed directly by the ocean air mass vapour is 80·08 mm at most. Precipitation formed by water vapour evaporated from local places is 117·05 mm at least. That is to say that precipitation formed directly by the ocean air mass vapour accounts for 32·06% of the total precipitation at most. Precipitation formed by water vapour evaporated from local places accounts for 46·86% of the total precipitation at least. At least 21·8% of the total precipitation came from water vapour that was evaporated on the way and transported by the monsoon circulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Curtis D. Holder 《水文研究》2003,17(10):2001-2010
Fog precipitation occurs when fog droplets are filtered by the forest canopy and coalesce on the vegetative surfaces to form larger water droplets that drip to the forest floor. This study examines the quantity of throughfall compared with incident precipitation produced by the canopy of a lower montane rain forest (2100 m) and an upper montane cloud forest (2550 m) in the Sierra de las Minas Biosphere Reserve, Guatemala. Fog precipitation was measured with throughfall and precipitation gauges from 23 July 1995 to 7 June 1996. Fog precipitation occurred during sampling periods when throughfall exceeded incident precipitation. Fog precipitation contributed <1% of total water inputs in the cloud forest at 2100 m during the 44‐week period, whereas fog precipitation contributed 7·4% at 2550 m during the same period. The depth equivalent of fog precipitation was greater at 2550 m (203·4 mm) than at 2100 m (23·4 mm). The calculation of fog precipitation in this study is underestimated. The degree of underestimation may be evident in the difference in apparent rainfall interception between 2100 m (35%) and 2550 m (4%). Because the apparent interception rate at 2550 m is significantly lower than 2100 m, the canopy probably is saturated for longer periods as a result of cloud water contributions. Data show a seasonal pattern of fog precipitation most evident at the 2550 m site. Fog precipitation represented a larger proportion of total water inputs during the dry season (November to May). Because cloud forests generate greater than 1 mm day?1 of fog precipitation in higher elevations of the Sierra de las Minas, the conservation of the cloud forest may be important to meet the water demands of a growing population in the surrounding arid lowlands. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Ashley A. Webb 《水文研究》2009,23(12):1679-1689
Streamflows were measured in two Pinus radiata plantation catchments and one native eucalypt forest catchment in Canobolas State forest from 1999 to 2007. In 2002/2003, clearfall harvesting of 43·2 and 40·3% of two plantation catchments occurred, respectively. Water yields increased by 54 mm (52%), 71 mm (35%) and 50 mm (19%) in the first three years post‐harvest in treated catchment A and by 103 mm (118%), 157 mm (82%) and 119 mm (48%) in treated catchment B relative to the native forest control catchment. In the fourth post‐harvest water year annual rainfall was only 488 mm, which resulted in negligible run‐off in all catchments, regardless of forest cover. In both plantation catchments, monthly streamflows increased significantly (p = 0·01, p < 0·001) due to a significant increase in baseflows (p < 0·001) after harvesting. Monthly stormflows were not significantly affected by harvesting. Flow duration curve analyses indicated a variable response between the two plantation catchments. Treated catchment A was converted from an ephemeral stream flowing 42% of the time pre‐harvest to a temporary stream flowing 82% of the time post‐harvest. These changes occurred throughout all seasons of the year but were most pronounced during summer and autumn when baseflows were maintained post‐harvest but were not observed under native forest or mature pine plantations. By contrast, flow duration increased in treated catchment B from 12% of the time pre‐harvest to 38% of the time post‐harvest with the greatest changes measured during the winter and spring months when streamflow would normally occur under native forest conditions. These observations have important implications for the development of models of plantation water use to be utilized in water resource planning in Australia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
David Dunkerley 《水文研究》2008,22(26):5024-5036
Rainfall is routinely reported as falling in ‘events’ or ‘storms’ whose beginning and end are defined by rainless intervals of a nominated duration (minimum inter‐event time, MIT). Rain events commonly exhibit fluctuations in rain rate as well as periods when rain ceases altogether. Event characteristics such as depth, mean rain rate, and the surface runoff volume generated, are defined in relation to the length of the rain event. These derived properties are dependent upon the value of MIT adopted to define the event, and the literature reveals a wide range of MIT criteria. Surprisingly little attention has been paid to this dependency, which limits the inter‐comparison of results in published work. The diversity in criteria also diminishes the usefulness of historical data on event durations, rain rates, etc., in attempts to document changes in the rainfall climate. This paper reviews the range of approaches used in the recognition of rain events, and a 5 year pluviograph record from an arid location is analysed. Changing MIT from 15 min to 24 h (lying within the range of published criteria) alters the number of rain events from 550 to 118. The mean rain rate declines from 2·04 mm h?1 to 0·94 mm h?1, and the geometric mean event duration rises from 0·66 h to 3·98 h. This wide variation in the properties of rain events indicates that more attention needs to be paid to the selection and reporting of event criteria in studies that adopt event‐based data analysis. The selection of a MIT criterion is shown to involve a compromise between the independence of widely‐spaced events and their increasingly variable intra‐event characteristics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is focused on the lag time of flow confluence. Lag is described empirically by the precipitation factor in hydrological modelling, but the traditional way to establish the relationship between lag and intensity is not very satisfactory in arid and semi‐arid regions. A total 215 rainfall–runoff experiments were conducted to reveal the effects of net rain duration on lag and intensity. The results show that a correlation between lag and rain intensity exists under certain conditions. There is a critical value in net rain intensity (0·8–1 mm min?1) in the correlation curve of lag and net rain intensity in the given experimental watershed in the laboratory. Similarly, a critical value of net rain duration also exists. This value is the total confluence time. The features of lag time change significantly if intensity or duration is less or greater than the critical value. The study also explores the joint effects of net rain intensity and duration on lag. The formula established among lag, intensity and duration resulted in a better fit. Therefore, the two‐parameter (intensity and duration) empirical formula for lag is better than the traditional single‐parameter (intensity) method. This two‐parameter correlation formula can also be applied to a temporally and spatially uneven runoff processes. A typical field watershed is selected to test the results of the experiments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This study analyses some hydrological driving forces and their interrelation with surface‐flow initiation in a semiarid Caatinga basin (12 km2), Northeastern Brazil. During the analysis period (2005 – 2014), 118 events with precipitation higher than 10 mm were monitored, providing 45 events with runoff, 25 with negligible runoff and 49 without runoff. To verify the dominant processes, 179 on‐site measurements of saturated hydraulic conductivity (Ksat) were conducted. The results showed that annual runoff coefficient lay below 0.5% and discharge at the outlet has only occurred four days per annum on average, providing an insight to the surface‐water scarcity of the Caatinga biome. The most relevant variables to explain runoff initiation were total precipitation and maximum 60‐min rainfall intensity (I60). Runoff always occurred when rainfall surpassed 31 mm, but it never occurred for rainfall below 14 mm or for I60 below 12 mm h?1. The fact that the duration of the critical intensity is similar to the basin concentration time (65 min) and that the infiltration threshold value approaches the river‐bank saturated hydraulic conductivity support the assumption that Hortonian runoff prevails. However, none of the analysed variables (total or precedent precipitation, soil moisture content, rainfall intensities or rainfall duration) has been able to explain the runoff initiation in all monitored events: the best criteria, e.g. failed to explain 27% of the events. It is possible that surface‐flow initiation in the Caatinga biome is strongly influenced by the root‐system dynamics, which changes macro‐porosity status and, therefore, initial abstraction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Quantifying of direct recharge derived from precipitation is crucial for assessing sustainability of well‐irrigated agriculture. In the North China Plain, the land use is dominated by groundwater‐irrigated farmland where the direct recharge derived from precipitation and irrigation. To characterize the mean rate and historical variance of direct recharge derived from precipitation, unsaturated zone profiles of chloride and δ18O in the dry river bed of the Beiyishui River were employed. The results show that archival time scale of the profile covers the duration from 1980 to 2002 (corresponding to depths from 5 to 2 m) which is indicated by matching the δ18O peaks in the isotope profile with the aridity indexes gained by instrumental records of annual precipitation and annual potential evaporation. Using the chloride mass balance method, the mean rate of the direct recharge corresponding to the archival time scale is estimated to be 3·8 ± 0·8 mm year?1, which accounts for about 0·7% of the long‐term average annual precipitation. Further, the direct recharge rates vary from 2·1 to 6·8 mm year?1 since 1980. Despite the subhumid climate, the estimate of recharge rates is in line with other findings in semiarid regions. The low rate of direct recharge is considered as a result of the relative dry climate in recent decades. In dry river bed, unsaturated zone profiles of chloride and δ18O combined with instrumental records could offer valuable information about the direct recharge derived from precipitation during droughts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The impact of climate change on the behaviour of intensity–duration–frequency curves is critical to the estimation of design storms, and thus to the safe design of drainage infrastructure. The present study develops a regional time trend methodology that detects the impact of climate change on extreme precipitation from 1960 to 2010. The regional time trend linear regression method is fitted to different durations of annual maximum precipitation intensities derived from multiple sites in Ontario, Canada. The results show the relationship between climate change and increased extreme precipitation in this province. The regional trend analysis demonstrates, under nonstationary conditions arising from climate change, that the intensity of extreme precipitation increased decennially between 1.25% for the 30‐min storm and 1.82% for the 24‐h storm. A comparison of the results with a regional Mann–Kendall test validates the found regional time‐trend results. The results are employed to extrapolate the intensity–duration–frequency curves temporally and spatially for future decades across the province. The results of the regional time trend assessment help with the establishment of new safety margins for infrastructure design in Ontario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
B. Abou Zakhem  R. Hafez 《水文研究》2010,24(18):2641-2654
The chemical and isotopic composition of monthly composite rain samples collected at 13 meteoric stations in Syria during two hydrological cycles from 1991 to 1993 have been measured. The chemical analysis of the samples revealed at a number of stations pollution due to industry and sand storms. The temporal and spatial variation of the isotopic composition has been found to be comparable with one of the neighbouring countries such as Jordan and others. The average weighted oxygen‐18 and deuterium values are − 7·5 and − 39·11‰, respectively, and the deuterium excess is 21‰ . The individual isotope values can be divided into two groups. One group is represented by winter precipitation and fits closely the Mediterranean Meteorological Water Line (MMWL). Thus, for winter precipitation, condensation of Mediterranean water vapour appears to be the dominating isotope fractionation process. The other group represents spring precipitation and is spread along an evaporation line below the MMWL, thus indicating the influence of sub‐cloud evaporation. The d‐excess has been found to be lower in the north of Syria (19·9‰ at Tartous, 18·1‰ at Jarablous) than in the south of the country (23·4‰ at Sweida, 24·1‰ at Izra) where Mediterranean air mass dominates. The d‐excess of precipitation in neighbouring countries is also close to the average value of the eastern Mediterranean basin of 22‰ , e.g. for Jordan the value is 23‰ , which signifies that Mediterranean water vapour is, for all these countries, the dominant source of precipitation. The tritium content of precipitation was found to increase with distance from the coast (5·3 TU at coastal station Tartous, 8·8 TU at continental station Palmyra). Low tritium content and high d‐excess at coastal stations clearly indicate a Mediterranean air moisture source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Performance of a feed‐forward back‐propagation artificial neural network on forecasting the daily occurrence and annual depth of rainfall at a single meteorological station is presented. Both short‐term and long‐term forecasting was attempted, with ground level data collected by the meteorological station in Colombo, Sri Lanka (79° 52′E, 6° 54′N) during two time periods, 1994–2003 and 1869–2003. Two neural network models were developed; a one‐day‐ahead model for predicting the rainfall occurrence of the next day, which was able to make predictions with a 74·3% accuracy, and one‐year‐ahead model for yearly rainfall depth predictions with an 80·0% accuracy within a ± 5% error bound. Each of these models was extended to make predictions several time steps into the future, where accuracies were found to decrease rapidly with the number of time steps. The success rates and rainfall variability within the north‐east and south‐west monsoon seasons are also discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The paper describes a parsimonious approach for generating continuous daily stream‐flow time‐series from observed daily rainfall data in a catchment. The key characteristic in the method is a duration curve. It is used to convert the daily rainfall information from source rain gauges into a continuous daily hydrograph at the destination river site. For each source rain gauge a time‐series of rainfall related ‘current precipitation index’ is generated and its duration curve is established. The current precipitation index reflects the current catchment wetness and is defined as a continuous function of precipitation, which accumulates on rainy days and exponentially decays during the periods of no rainfall. The process of rainfall‐to‐runoff conversion is based on the assumption that daily current precipitation index values at rainfall site(s) in a catchment and the destination site's daily flows correspond to similar probabilities on their respective duration curves. The method is tested in several small catchments in South Africa. The method is designed primarily for application at ungauged sites in data‐poor regions where the use of more complex and information consuming techniques of data generation may not be justified. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
In cold regions, the response and related antecedent mechanisms that produce flood flows from rainfall events have received limited study. In 2007, a small watershed at Cape Bounty, Melville Island, Nunavut, was studied in detail during the melt season. Two rainfall events on June 30 and July 22, totalling 9·2 and 10·8 mm, respectively, represented significant contributions to seasonal discharge and sediment transport in a year with a low winter snowpack. The precipitation events elevated discharge and suspended sediment concentrations to twice the magnitude of the nival melt, and generated the only measurable downstream lacustrine turbidity current of the season. In two days, rainfall runoff transported 35% of the seasonal suspended sediment load, in contrast to 29% transported over the nival freshet. The magnitude and intensity of the rain events were not unusual in this setting, but the rainfall response was substantial in comparison with equivalent past events. Exceptional temperatures of July 2007 generated early, deep permafrost thaw, and ground ice melt. The resultant increase in soil moisture amplified the subsequent rainfall runoff and sediment transport response. These results demonstrate the importance of antecedent moisture conditions and the role of permafrost active layer development as an important factor in the rainfall runoff and sediment transport response to precipitation events. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号