首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A project to link the Dead Sea to the Red Sea via a canal is undergoing extensive study. In previous works, a generalized mathematical model describing the state of the Dead Sea and a simulation model to implement it have been developed. The model is extended to include the proposed canal project and investigates two alternative modelling canal scenarios: (1) introducing the canal water inflow into the bottom layer or (2) the top layer of the sea. The predicted general effects of the canal are the restoration of the water level of the sea to pre‐1970s level; an increase in the total evaporation rate and a decrease in the top layer salinity. Implementing scenario 1, the model predicts that: the water level of the Dead Sea will exceed the desired level design value and therefore shorter filling time can be used; seasonal stratification will persist; total evaporation rate will increase Modestly; there will a small decrease in the salinity of the top layer but a substantial decrease in the salinity of the bottom layer, which will hurt industries severely; there will be a continuation of seasonal crystallization of aragonite and gypsum. Implementing scenario 2 the model predicts that: the water level of the Dead Sea will be maintained at the desired level design value; stratification will be re‐established, with the formation of a permanent two‐layer system; there will be a substantial increase in the total evaporation rate; the salinity of the top layer will decrease significantly but there will be continuous slower salinity increase in the bottom layer; the crystallization of aragonite will cease, but seasonal gypsum crystallization can be expected to continue as soon as the filling period ends and the canal shifts into normal operation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The Dead Sea is a hypersaline terminal lake located in the Rift Valley between Jordan and Israel. In this work a generalised mathematical model describing the behaviour of the Dead Sea has been developed. The model established the condition of the Sea by evaluating a series of ordinary differential equations describing mass balances on the water and major chemical species in the Sea. The Sea was modelled as a two-layer system. The model was validated by comparing its predictions to measured level records. The results obtained highlighted the importance of detailed evaporation modelling, showed the necessity to model the Sea as a two-layer system, validated the usage of average distribution data to estimate the flowrates of rivers, and justified ignoring diffusion effects in further modelling. The model predicted that in the case of continuing current conditions, the level will continue to decline, at a decelerating rate, because the area and evaporation rate are both decreasing. Under these conditions, the model shows that the salinity of both layers will continue to increase, and that seasonal stratification and seasonal crystallisation of gypsum and aragonite will continue.  相似文献   

3.
A nonlinear function approach for the normalized complementary relationship evaporation model that is different from the methodology maintaining the symmetric complementary relationship with appropriate definitions of potential and wet‐environment evaporation is proposed and verified. This approach employs the definitions used in the advection‐aridity model, wherein the potential is estimated using the Penman equation. Normalized by Penman potential evaporation, the complementary relationship model is expressed as a function describing the relationship between the evaporation ratio (the ratio of the actual to the Penman potential evaporation) and the proportion of the radiation term in Penman potential evaporation. The new nonlinear function proposed in the current study is approximately equivalent to the advection‐aridity and the modified Granger models under conditions that are neither too wet nor too dry, but is more reasonable under arid and wet conditions. The new nonlinear function model performs well in estimating actual evaporation, as verified by the observed data from four sites under different land covers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A project to link the Dead Sea (DS) to the Red Sea (RS) via a canal is undergoing extensive study. In a previous work, a generalised mathematical model describing the behaviour of the Dead Sea has been developed. Here, the model is extended to include the proposed canal project with a desalination plant. The general effects of a DS–RS Canal predicted by the model were the formation of a permanent two-layer system thus re-establishing stratification conditions, an increase in the evaporation rate due to a decrease in the top layer salinity, the cease in aragonite precipitation, and the re-occurrence of seasonal gypsum precipitation after the filling period depending on the filling regime applied.  相似文献   

5.
A complementary relationship evaporation model has been proposed and verified based on evaluations of the advection–aridity model and the Granger's complementary relationship model (Granger model) in dimensionless forms. Normalized by Penman potential evaporation, the Granger model and the advection–aridity model have been transformed into similar dimensionless forms. Evaporation ratio (ratio of actual evaporation to Penman potential evaporation) has been expressed as a function of dimensionless variable based on radiation and atmospheric conditions. Similar dimensionless variables for the different functions have been used in the two models. By referring to the dimensionless variable from the advection–aridity model and the function from the Granger model, a new model to estimate actual evaporation was proposed. The performance of the new model has been validated by the observed data from four sites under different land covers. The new model is an enhanced Granger model with better evaporation prediction over the aforementioned different land covers. It also offers more stable optimized parameters in a grassland site than the Granger model. The new model somewhat approximates the advection–aridity model under neither too wet nor too dry conditions, but without its system bias. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The Dead Sea is a closed lake, the water level of which is lowering at an alarming rate of about 1 m/year. Factors difficult to determine in its water balance are evaporation and groundwater inflow, some of which emanate as submarine groundwater discharge. A vertical buoyant jet generated by the difference in densities between the groundwater and the Dead Sea brine forms at submarine spring outlets. To characterize this flow field and to determine its volumetric discharge, a system was developed to measure the velocity and density of the ascending submarine groundwater across the center of the stream along several horizontal sections and equidistant depths while divers sampled the spring. This was also undertaken on an artificial submarine spring with a known discharge to determine the quality of the measurements and the accuracy of the method. The underwater widening of the flow is linear and independent of the volumetric spring discharge. The temperature of the Dead Sea brine at lower layers primarily determines the temperature of the surface of the upwelling, produced above the jet flow, as the origin of the main mass of water in the submarine jet flow is Dead Sea brine. Based on the measurements, a model is presented to evaluate the distribution of velocity and solute density in the flow field of an emanating buoyant jet. This model allows the calculation of the volumetric submarine discharge, merely requiring either the maximum flow velocity or the minimal density at a given depth.  相似文献   

7.
Abstract

Abstract Evaporation is one of the fundamental elements in the hydrological cycle, which affects the yield of river basins, the capacity of reservoirs, the consumptive use of water by crops and the yield of underground supplies. In general, there are two approaches in the evaporation estimation, namely, direct and indirect. The indirect methods such as the Penman and Priestley-Taylor methods are based on meteorological variables, whereas the direct methods include the class A pan evaporation measurement as well as others such as class GGI-3000 pan and class U pan. The major difficulty in using a class A pan for the direct measurements arises because of the subsequent application of coefficients based on the measurements from a small tank to large bodies of open water. Such difficulties can be accommodated by fuzzy logic reasoning and models as alternative approaches to classical evaporation estimation formulations were applied to Lake Egirdir in the western part of Turkey. This study has three objectives: to develop fuzzy models for daily pan evaporation estimation from measured meteorological data, to compare the fuzzy models with the widely-used Penman method, and finally to evaluate the potential of fuzzy models in such applications. Among the measured meteorological variables used to implement the models of daily pan evaporation prediction are the daily observations of air and water temperatures, sunshine hours, solar radiation, air pressure, relative humidity and wind speed. Comparison of the classical and fuzzy logic models shows a better agreement between the fuzzy model estimations and measurements of daily pan evaporation than the Penman method.  相似文献   

8.
ABSTRACT

Evaporation is one of the most important components in the energy and water budgets of lakes and is a primary process of water loss from their surfaces. An artificial neural network (ANN) technique is used in this study to estimate daily evaporation from Lake Vegoritis in northern Greece and is compared with the classical empirical methods of Penman, Priestley-Taylor and the mass transfer method. Estimation of the evaporation over the lake is based on the energy budget method in combination with a mathematical model of water temperature distribution in the lake. Daily datasets of air temperature, relative humidity, wind velocity, sunshine hours and evaporation are used for training and testing of ANN models. Several input combinations and different ANN architectures are tested to detect the most suitable model for predicting lake evaporation. The best structure obtained for the ANN evaporation model is 4-4-1, with root mean square error (RMSE) from 0.69 to 1.35 mm d?1 and correlation coefficient from 0.79 to 0.92.
EDITOR M.C. Acreman

ASSOCIATE EDITOR not assigned  相似文献   

9.
The Dead Sea is the lowest spot on Earth. It is a closed saline lake located in the middle of the Jordan Rift Valley between Lake Tiberias and the Red Sea. Its major tributaries are the Jordan River itself and the Dead Sea side wadis. The Dead Sea has a unique ecosystem and its water has curative, industrial and recreational significance. The level of the Dead Sea has been continuously falling since the early 1930s at an average rate of 0·7 m per year. The water level, as of February 1998, is about 410·9 m below mean sea level. In this paper, a water balance model is developed for the Dead Sea by considering different hydrological components of this water balance, including precipitation, runoff, evaporation and groundwater flow. This model is calibrated based on historical levels of the Dead Sea. Different scenarios are investigated, including the proposed Dead Sea–Red Sea Canal. This project is supposed to halt the shrinking of the Dead Sea and restore it to pre‐1950 levels in the next century. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Evapotranspiration was studied at a salt marsh site in the Hunter River estuary, NSW, Australia, during 1996–8. Estimates of actual evapotranspiration (Ea) were obtained for three sites using the eddy correlation method. These values were compared with results obtained with the Penman and Penman–Monteith equations, and with pan evaporation. The Penman–Monteith method was found to be most reliable in estimating daily and hourly evapotranspiration. Surface resistance values averaging 12 s m?1 were derived from the eddy correlation estimates. Recent tidal flooding and rainfall were found to decrease surface resistance and increase Ea/Ep ratios. Estimates of evapotranspiration obtained using the Penman–Monteith method were shown to be sensitive to changes in surface resistance, canopy height and the method used to estimate net radiation from incoming solar radiation. These results underline the importance of accurately estimating such parameters based on site‐specific data rather than relying on empirical equations, which are derived primarily for crops and forests. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Five methods of computing reference evapotranspiration from a reference crop (Penman, radiation, Blaney-Criddle, Hargreaves and pan evaporation) have been studied for their applicability under different climatic conditions. The Penman method was taken as the standard and the other four methods were compared against this method. Good correlation was obtained between the values estimated by the four methods and the Penman method although differences in magnitude were found. Regression equations were developed to correct those differences in magnitude. The method suitable for the estimation of reference evapotranspiration for each climatic condition is also suggested.  相似文献   

12.
Fatih Konukcu 《水文研究》2007,21(26):3627-3634
The Penman equation, which calculates potential evaporation, was modified by Staple (1974, Soil Science Society of America Proceedings 38 : 837) to include in it the relative vapour pressure hs of an unsaturated soil to predict actual evaporation from a soil surface. This improved the prediction when the difference between the temperature of the soil surface and ambient air is relatively small. The objectives of this study were (i) to revise it further using the actual temperature of the soil surface and air to provide the upper boundary condition in computing evaporative flux from the soil surface and (ii) to determine the range of water content for which the modified form of the Penman equation is applicable. The method adopted was tested by a series of outdoor experiments with a clay soil. The method of Staple (1974) overestimated the rate of evaporation above the water content 0·14 m3 m?3 (up to 30% deviation), whereas the new method agreed well with the measured rates (maximum 7% deviation). Below 0·14 m3 m?3 water content, both methods underestimated, but the Staple (1974) method deviated more from the measured values: the deviations were above 70% and around 30% for the Staple (1974) and the new methods respectively. Although the new method provided accurate solutions for a wider range of water content from saturation to the lower limit of the liquid phase of a particular soil, the modification did not respond to the vapour phase of the soil moisture. Therefore, in the dry range (i.e. in the vapour phase in which the flow was entirely as vapour), either resistance models or a Fickian equation should be used. Although the effect of salinity on the measured rates was significant, the model erroneously calculated the same rates for both saline and non‐saline conditions. The effect of soil texture can easily be accounted by defining appropriate matric potential water content ψm(θ) and soil relative humidity water content hs(θ) relationships. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The high‐density Dead Sea water (1.235 g/cm3) forms a special interface configuration with the fresh groundwater resources of its surrounding aquifers. The fresh groundwater column beneath its surroundings is around one tenth of its length compared to oceanic water. This fact alone indicates the vulnerability of the fresh groundwater resources to the impacts of changes in the Dead Sea level and to saltwater migration. Ghyben‐Herzberg and Glover equations were used to calculate the volumes of water in coastal aquifers which were replaced by freshwater due to the interface seaward migration as a result of the drop in the level of the Dead Sea. For that purpose, the dynamic equation of Glover approach has been integrated to accommodate that type of interface readjustment. The calculated amounts of freshwater which substituted salt Dead Sea water due to the migration of interface are 3.21 · 1011 m3, from a Dead Sea level of –392 m to τ411 m below sea level. The average porosity of coastal aquifers was calculated to range from 2.8 to 2.94%. Geoelectric sounding measurements showed that areas underlying the coastal aquifers formerly occupied by the Dead Sea water are gradually becoming flushed and occupied by freshwater. The latter is becoming salinized due to the residuals of Dead Sea water in the aquifer matrix, the present salinity of which is lower than that of the Dead Sea water. At the same time salt dissolution from the Lisan Marl formation is causing collapses along the shorelines in the form of sinkholes, tens of meters in diameter and depth.  相似文献   

14.
In this paper the reaction of the salt‐/freshwater interface due to the changes in the Dead Sea level are elaborated at in details by using the inflows into the Dead Sea, the outflows due to evaporation losses and artificial discharges, and the hydrographic registrations of the Dead Sea level. The analyses show that the interface seaward migration resulted in a groundwater discharge of around 423 Mio m3 per meter drop in the level of the Dead Sea in the period 1994–1998 and of around 525 Mio m3/m in the period 1930–1937. The additional amount of groundwater joining the Dead Sea due to the interface seaward migration was 51 Mio m3 per one square kilometer of shrinkage in the area of the Dead Sea in the period 1930–1937 and 91 Mio m3/km2 in the period 1994–1998. The riparian states of the Dead Sea are nowadays loosing 370 Mio m3/a of freshwater to the Dead Sea through the interface readjustment mechanisms as a result of their over exploitation of waters which formerly fed the Dead Sea.  相似文献   

15.
A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean rates of wet canopy evaporation and rainfall derived previously for forests and an estimate of the roof storage capacity derived from the data collected in the previous study. Although the model prediction is sensitive to the value of storage capacity, close correlation between the modelled and measured runoff indicates that the model captures the essential processes. It is concluded that the process of evaporation from an urban roof is sufficiently similar to that from a forest canopy for forest evaporation models to be used to give a useful estimate of urban roof runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Few detailed evaporation studies exist for small lakes or reservoirs in mountainous settings. A detailed evaporation study was conducted at Mirror Lake, a 0.15 km2 lake in New Hampshire, northeastern USA, as part of a long-term investigation of lake hydrology. Evaporation was determined using 14 alternate evaporation methods during six open-water seasons and compared with values from the Bowen-ratio energy-budget (BREB) method, considered the standard. Values from the Priestley–Taylor, deBruin–Keijman, and Penman methods compared most favorably with BREB-determined values. Differences from BREB values averaged 0.19, 0.27, and 0.20 mm d−1, respectively, and results were within 20% of BREB values during more than 90% of the 37 monthly comparison periods. All three methods require measurement of net radiation, air temperature, change in heat stored in the lake, and vapor pressure, making them relatively data intensive. Several of the methods had substantial bias when compared with BREB values and were subsequently modified to eliminate bias. Methods that rely only on measurement of air temperature, or air temperature and solar radiation, were relatively cost-effective options for measuring evaporation at this small New England lake, outperforming some methods that require measurement of a greater number of variables. It is likely that the atmosphere above Mirror Lake was affected by occasional formation of separation eddies on the lee side of nearby high terrain, although those influences do not appear to be significant to measured evaporation from the lake when averaged over monthly periods.  相似文献   

17.
As a part of Jordan’s efforts to quantify the effect of the Dead Sea level decline on the precious groundwater resources of the surrounding aquifers, the authors analyzed the historic or predevelopment inflows and outflows of the Dead Sea basin and the resulting water balance which included precipitation, evaporation, surface‐ and groundwaters. The predevelopment situation was taken as the point of departure for the sake of this study. Furthermore, the present situation was analyzed in an attempt to quantify the groundwater inflows into the Dead Sea as a result of drop in the Dead Sea level. The groundwater component and the corresponding saltwater/freshwater interface were taken as the variables to balance the levels of the sea that would have been reached without the contribution of the uncontrolled groundwater inflows as a result of the salt/freshwater interface seaward migration. The present day water balance that includes all the water diversion projects from all riparians indicates serious declines in the Dead Sea level. The effects of the present day level declines on the fresh groundwater/saltwater interface indicate that considerable amounts of groundwater are driven into the Sea as a result of the seaward migration of the freshwater/saline water interface.  相似文献   

18.
C.-Y. Xu  V. P. Singh 《水文研究》1998,12(3):429-442
This paper consists of two parts. In the first part, the significance of five major factors, including solar radiation, vapour pressure deficit, relative humidity, wind speed and air temperature, that control evaporation were evaluated comparatively at different time-scales using the data from Changines station in Switzerland. The comparative evaluation was made at hourly, daily, 10-day and monthly time-scales. It was found that the role of controlling variables in evaporation varied with the time-scale. The vapour pressure deficit was best correlated with pan evaporation at all time-scales, while the wind speed was least correlated with pan evaporation, especially when the time period was longer than a day. In the second part, four equations for calculating evaporation, including temperature-based methods, humidity-based methods, mass transfer methods and radiation-based methods, were compared with pan evaporation. Of these four equations, the Penman equation, representing the mass transfer method, resulted in monthly evaporation values that agreed most closely with pan evaporation values. The Romanenko equation, representing the humidity method, also compared reasonably well with pan evaporation. The Turc equation, representing the radiation method, and the Thornthwaite equation, representing the temperature method, were found to underestimate evaporation significantly, especially for cold months. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Water budget analyses are important for the evaluation of the water resources in semiarid and arid regions. The lack of observed data is the major obstacle for hydrological modelling in arid regions. The aim of this study is the analysis and calculation of the natural water resources of the Western Dead Sea subsurface catchment, one which is highly sensitive to rainfall resulting in highly variable temporal and spatial groundwater recharge. We focus on the subsurface catchment and subsequently apply the findings to a large‐scale groundwater flow model to estimate the groundwater discharge to the Dead Sea. We apply a semidistributed hydrological model (J2000g), originally developed for the Mediterranean, to the hyperarid region of the Western Dead Sea catchment, where runoff data and meteorological records are sparsely available. The challenge is to simulate the water budget, where the localized nature of extreme rainstorms together with sparse runoff data results in few observed runoff and recharge events. To overcome the scarcity of climate input data, we enhance the database with mean monthly rainfall data. The rainfall data of 2 satellites are shown to be unsuitable to fill the missing rainfall data due to underrepresentation of the steep hydrological gradient and temporal resolution. Hydrological models need to be calibrated against measured values; hence, the absence of adequate data can be problematic. Therefore, our calibration approach is based on a nested strategy of diverse observations. We calculate a direct surface runoff of the Western Dead Sea surface area (1,801 km2) of 3.4 mm/a and an average recharge (36.7 mm/a) for the 3,816 km2 subsurface drainage basin of the Cretaceous aquifer system.  相似文献   

20.
Lake E?irdir is located in the Lakes District in southwestern Turkey and it is the second largest freshwater resource lake. Evaporation is an important parameter in hydrological and meteorological practical studies. This study has three objectives: (1) to develop models for the estimation of daily evaporation using measured data from the automated GroWeather meteorological station located near Lake E?irdir; (2) to compare the evaporation models with the classical Penman approach; (3) to evaluate the potential of each model. The comparisons are based on daily and monthly available data from 2001 and 2002. The evaporation estimation models (EEMs) developed in this paper have lower mean absolute errors and higher coefficient of determination R2 values than the Penman method. In order to evaluate the potential of the EEMs, daily evaporation values are calculated by the Priestley–Taylor, Brutsaert–Stricker, de Bruin, Makkink and Hamon methods. The EEMs are statistically indistinguishable from the classical methods on the basis of the parameters of mean, standard deviation, etc. In the evaluation of daily and monthly values, the relative error percentage for daily evaporation has lower values than for monthly evaporation. It can be seen that the EEMs help in calculating daily evaporation rather than monthly. Final evaluation and comparison indicate that there is a good agreement between the results of EEMs and the Penman approach than with the classical methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号