共查询到20条相似文献,搜索用时 0 毫秒
1.
A multiproxy record of Holocene environmental changes in the central Kola Peninsula,northwest Russia
A sediment core from Chuna Lake (Kola Peninsula, northwest Russia) was studied for pollen, diatoms and sediment chemistry in order to infer post‐glacial environmental changes and to investigate responses of the lake ecosystem to these changes. The past pH and dissolved organic carbon (DOC) of the lake were inferred using diatom‐based transfer functions. Between 9000 and 4200 cal. yr BP, slow natural acidification and major changes in the diatom flora occurred in Chuna Lake. These correlated with changes in regional pollen, the arrival of trees in the catchment, changes in erosion, sediment organic content and DOC. During the past 4200 yr diatom‐based proxies showed no clear response to changes in vegetation and erosion, as autochthonous ecological processes became more important than external climate influences during the late Holocene. The pollen stratigraphy reflects the major climate patterns of the central Kola Peninsula during the Holocene, i.e. a climate optimum between 9000 and 5400/5000 cal. yr BP when climate was warm and dry, and gradual climate cooling and an increase in moisture during the past 5400/5000 yr. This agrees with the occurrence of the north–south humidity gradient in Fennoscandia during the Holocene. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
2.
We report here on cirque infills mapped in the Khibiny Mountains, Kola Peninsula, Russia. Cirque infills are morainic deposits located near the headwalls of valleys and cirques. Their location and shape, often with concave margins towards the valley side, indicate that they were deposited by ice flowing up‐valley, into the mountains, rather than by local glaciers. We suggest that they formed during the last deglaciation, when Khibiny was a nunatak and Fennoscandian ice sheet lobes extended into valleys and cirques of the massif. The formation of cirque infills is probably more related to ice sheet dynamic factors, occurring when the ice margin retreated from the cirques, than to climate‐driven interruption in the ice‐marginal retreat. Glacial conditions similar to those prevalent when the Khibiny cirque infills were formed, occur today in Antarctica where the ice sheets engulf nunatak ranges. In Heimefrontfjella, Antarctica, the formation of supraglacial moraines at the head of cirques are linked to blue‐ice conditions, indicating locally low accumulation rates, a dry continental climate and sublimation dominated ablation. We suggest that these Antarctic moraines are modern analogues of cirque infills on the Kola Peninsula, and possibly, that the cirque infills may be used as palaeoenvironmental indicators. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
3.
A review of the occurrence, form and origin of C-bearing species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia 总被引:4,自引:0,他引:4
The Khibiny Complex hosts a wide variety of carbon-bearing species that include both oxidized and reduced varieties. Oxidised varieties include carbonate minerals, especially in the carbonatite complex at the eastern end of the pluton, and Na-carbonate phases. Reduced varieties include abiogenic hydrocarbon gases, particularly methane and ethane, dispersed bitumens, solid organic substances and graphite. The majority of the carbon in the Khibiny Complex is hosted in either the carbonatite complex or within the so-called “Central Arch”. The Central Arch is a ring-shaped structure which separates khibinites (coarse-grained eudialite-bearing nepheline-syenites) in the outer part of the complex from lyavochorrites (medium-grained nepheline-syenites) and foyaites in the inner part. The Central Arch is petrologically diverse and hosts the major REE-enriched apatite–nepheline deposits for which the complex is best known. It also hosts zones with elevated hydrocarbon (dominantly methane) gas content and zones of hydrothermally deposited Na-carbonate mineralisation. The hydrocarbon gases are most likely the product of a series of post-magmatic abiogenic reactions. It is likely that the concentration of apatite-nepheline deposits, hydrocarbon gases and Na-carbonate mineralisation, is a function of long lived fluid percolation through the Central Arch. Fluid migration was facilitated by stress release during cooling and uplift of the Khibiny Complex. As a result, carbon with a mantle signature was concentrated into a narrow ring-shaped zone. 相似文献
4.
A Late‐glacial–Holocene pollen record was obtained from a 3.96 m sediment core taken from Lake St Clair, central Tasmania. Modern vegetation and pollen analyses formed the basis for interpretation of the vegetation and climate history. Following deglaciation and before ca. 18450 yr BP Podocarpus lawrencei coniferous heath and Astelia–Plantago wet alpine herbfield became established at Lake St Clair. A distinct Poaceae‐Plantago peak occurs between 18450 and 11210 yr BP and a mean annual temperature depression from ca. 6.2°C to 3°C below present is inferred for this period. The marked reduction in Podocarpus and strong increase of Poaceae suggests reduced precipitation levels during the period of widespread deglaciation (ca. 18.5–11 kyr BP). The local Late Pleistocene–Holocene non‐forest to forest biostratigraphical boundary is dated at 11.2 kyr BP. It is characterised by expansion of the subalpine taxa Athrotaxis/Diselma with Nothofagus gunnii, and by the establishment of Nothofagus cunninghamii with Eucalyptus spp. A ‘Phyllocladus bulge’ prior to the expansion of Nothofagus cunninghamii, reported at other Tasmanian sites, is not present at Lake St Clair. Nothofagus cunninghamii cool temperate rainforest peaked at 7800 yr BP, probably under wetter climatic conditions than present. The maximum development of rainforest in the early–middle Holocene may indicate that the temperature was slightly warmer than present, but the evidence is not definitive. The expansion of Eucalyptus spp. and Poaceae after 6000 yr BP may be partly a disclimax effect as a result of Aboriginal burning, but appears also to reflect reduced precipitation. The changes in vegetation and inferred climate can be explained by major changes in synoptic patterns of southern Australia and the adjacent southwest Pacific. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
5.
6.
7.
The Holocene sediment of Lago Piccolo di Avigliana (Piedmont, Italy, 356 m a.s.l.) was dated by 14C and analysed for pollen to reconstruct the vegetation history of the area. The early‐ and mid‐Holocene pollen record shows environmental responses to centennial‐scale climatic changes as evidenced by independent palaeoclimatic proxies. When human impact was low or negligible, continental mixed‐oak forests decreased at ca. 9300 BC in response to the early‐Holocene Preboreal climatic oscillation. Abies alba expanded in two phases, probably in response to higher moisture availability at ca. 6000 and ca. 4000 BC , while Fagus expanded later, possibly in response to a climatic change at 3300 BC . During and after the Bronze Age five distinct phases of intensified land use were detected. The near synchroneity with the land‐use phases detected in wetter regions in northern and southern Switzerland points to a common forcing factor in spite of cultural differences. Increasing minerogenic input to the lake since 1000 BC coincided with Late Bronze—Iron Age technical innovations and probably indicate soil erosion as a consequence of deforestation in the lake catchment. The highest values for cultural indicators occurred at 700–450 and at 300–50 BC , coinciding with periods of high solar activity (inferred from Δ14C). This suggests that Iron Age land use was enhanced by high solar activity, while re‐occupation of partly abandoned areas after crises in earlier periods match better with the GRIP stable isotope record. On the basis of our data and comparison with independent palaeoclimatic proxies we suggest that precipitation variation was much more important than temperature oscillations in driving vegetation and societal changes throughout the Holocene. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
8.
A pollen diagram has been produced from the base of the Caburn (East Sussex) that provides a temporally and spatially precise record of vegetation change on the English chalklands during the mid‐Holocene (ca. 7100 to ca. 3800 cal. yr BP). During this period the slopes above the site appear to have been well‐wooded, with vegetation analogous to modern Fraxinus–Acer–Mercurialis communities in which Tilia was also a prominent constituent. However, scrub and grassland taxa such as Juniperus communis, Cornus sanguinea and Plantago lanceolata are also regularly recorded along with, from ca. 6000 cal. yr BP onwards, species specific to Chalk grassland (e.g. Sanguisorba minor). This supports suggestions that elements of Chalk grassland persisted in lowland England through the Holocene. Such communities are most likely to have occupied the steepest slopes, although the processes that maintained them are unclear. Human interference with vegetation close to the site may have begun as early as ca. 6350 cal. yr BP and initially involved a woodland management practice such as coppicing. From the primary Ulmus decline (ca. 5700 cal. yr BP) onwards, phases of limited clearance accompanied by cereal cultivation occurred. Taxus baccata was an important component of the woodland which regenerated between these phases. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
9.
Martina Bisculm Daniele Colombaroli Elisa Vescovi Jacqueline F. N. van Leeuwen Paul D. Henne Julian Rothen Giovanni Procacci Salvatore Pasta Tommaso La Mantia Willy Tinner 《第四纪科学杂志》2012,27(7):687-698
High‐resolution pollen, macrofossil and charcoal data, combined with accelerator mass spectrometry 14C dating and multivariate analysis, were used to reconstruct Holocene vegetation and fire dynamics at Urio Quattrocchi, a small lake in the supra‐mediterranean belt in the Nebrodi Mountains of Sicily (Italy). The data suggest that after 10 000 cal a BP increasing moisture availability supported closed forests with deciduous (Quercus cerris, Fagus sylvatica and Fraxinus spp.) and evergreen (Quercus ilex) species. Species‐rich closed forest persisted until 6850 cal a BP, when Neolithic activities caused a forest decline and affected plant diversity. Secondary forest with abundant Ilex aquifolium recovered between 6650 and 6000 cal a BP, indicating moist conditions. From 5000 cal a BP, agriculture and pastoralism led to the currently fragmented landscape with sparse deciduous forests (Quercus cerris). The study suggests that evergreen broadleaved species were more important at elevations above 1000 m a.s.l. before ca. 5000 cal a BP than subsequently, which might reflect less human impact or warmer‐than‐today climatic conditions between 10 000 and 5000 cal a BP. Despite land use since Neolithic times, deciduous supra‐mediterranean forests were never completely displaced from the Nebrodi Mountains, because of favourable moist conditions that persisted throughout the Holocene. Reconstructed vegetation dynamics document the absence of any pronounced mid‐ or late‐Holocene ‘aridification’ trend at the site, an issue which is controversially debated in Italy and the Mediterranean region. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
Palynological studies undertaken in the mountainous regions of the northwest of the Iberian Peninsula are few in number and have been concerned largely with the second half of the Holocene. New pollen data from two Galician sierras, the Courel and Queixa Sierras, provide a 10000‐yr record of vegetation and climate change. In the Courel Sierra before 9750 yr BP, Laguna Lucenza (1420 m a.s.l.) reflects a period of open landscape covered by Poaceae and heliophilous plants, which may be correlated with the Younger Dryas. The onset of the Holocene is characterised by the expansion of oak woodland, prior to 9300 yr BP, following a short phase of birch along with the gradual decline of pine. The oak values reach a peak at 8350 ± 80 yr BP. Towards 8800 yr BP Corylus begins to expand, followed by Alnus (7500 yr BP) and Ulmus. During this period, the Fraga pollen assemblage (Queixa Sierra, 1360 m a.s.l.) indicates Betula woodland surrounding the site, masking the regional predominance of oak. After 5000 yr BP there is a gradual decrease in arboreal pollen values in both Sierras. Castanea appears in Laguna Lucenza (Courel Sierra) at 4075 ± 75 yr BP. There is widespread deforestation during the last 4000 yr. During this period the presence of large quantities of microcharcoal particles points to the occurrence of fire. The reduction in forest is associated with the arrival of cultivation at 4000 yr BP at low altitudes in the Queixa Sierra. At higher altitudes the first agricultural activity is dated at later than 2000 yr BP. This coincides with the first record of cereal cultivation at high altitude in the Courel Sierra. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
11.
12.
H. P. Sejrup H. Haflidason T. Flateb D. Klitgaard Kristensen K. Grsfjeld E. Larsen 《第四纪科学杂志》2001,16(2):181-198
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine‐grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9–7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large‐scale sliding on the continental margin off Norway (the Storegga Tsunami). During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea‐surface summer temperatures, possibly with year‐round sea‐ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea‐surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4–9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4–0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large‐scale oceanic circulation. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
We present here the results of pollen analysis of two sequences of about 8.06 m and 11.90 m length, originating from two adjacent peat bogs in the southern part of Transylvania province, Romania (155 and 122 pollen spectra). The vegetation record, which is supported by 17 14C dates, begins in the Late Glacial interstadial when forest recolonisation began with the development of Pinus, without a pioneer Betula phase. Picea began to expand from regional refuges. After a well‐defined Younger Dryas, the Holocene opens with the expansion of Betula, Ulmus and Picea, followed, at about 10 400 cal. yr BP, by Fraxinus, Quercus and Tilia. The Corylus optimum is correlated with the Atlantic chronozone (after 8600 cal. yr BP). The local establishment of Carpinus occurred at about 6500 cal. yr BP, with a maximum at about 5700 cal. yr BP. Fagus pollen is regularly recorded after 8200 cal. yr BP. This taxon became dominant at about 3700 cal. yr BP. The first indications of human activities appear at around 7200 cal. yr BP. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
14.
The coastal cliffs of Cape Shpindler, Yugorski Peninsula, Arctic Russia, occupy a key position for recording overriding ice sheets during past glaciations in the Kara Sea area, either from the Kara Sea shelf or the uplands of Yugorski Peninsula/Polar Urals. This study on Late Quaternary glacial stratigraphy and glaciotectonic structures of the Cape Shpindler coastal cliffs records two glacier advances and two ice‐free periods older than the Holocene. During interglacial conditions, a sequence of marine to fluvial sediments was deposited. This was followed by a glacial event when ice moved southwards from an ice‐divide over Novaya Zemlya and overrode and disturbed the interglacial sediments. After a second period of fluvial deposition, under interstadial or interglacial conditions, the area was again subject to glacial overriding, with the ice moving northwards from an inland ice divide. The age‐control suggests that the older glacial event could possibly belong to marine oxygen isotope stage (MOIS) 8, Drenthe (300–250 ka), and that the underlying interglacial sediments might be Holsteinian (>300 ka). One implication of this is that relict glacier ice, buried in sediments and incorporated into the permafrost, may survive several interglacial and interstadial events. The younger glacial event recognised in the Cape Shpindler sequence is interpreted to be of Early‐to‐Middle Weichselian age. It is suggested to correlate to a regional glaciation around 90 or 60 ka. The Cape Shpindler record suggests more complex glacial dynamics during that glaciation than can be explained by a concentric ice sheet located in the Kara Sea, as suggested by recent geological and model studies. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
15.
M.G. Tossou A. Akogninou A. Ballouche M.A. Sowunmi K. Akpagana 《Journal of African Earth Sciences》2008,52(4-5):167-174
Pollen analysis of three core samples,YEV-I, GOHO.00 and DO.00, taken in the coastal area of Bénin shows the existence of mangrove during the Holocene. This mangrove underwent many physiognomic changes from the middle to the late Holocene. In the course of the middle Holocene (from 7500 to 2500 years before present (BP)), it stretched over a large area from the littoral inland. It was tightly closed and almost monospecific, dominated by Rhizophora. During the late Holocene, this mangrove started to regress around 3000 years BP and disappeared about 2500 years BP from the studied sites. It has been replaced by swamp meadows dominated by Paspalum vaginatum Sw. and a fresh water environment colonised by taxa such as Persicaria, Typha, Ludwigia, and Nymphaea. 相似文献
16.
Up to four nested Neoglacial moraines occur in front of glaciers on Lyngshalvöya. Lichenometric measurements at 21 glaciers demonstrate that these represent five episodes of glacier expansion, one of which predated the Little Ice Age. Lichenometric, dendrochronological and historical evidence indicates that the oldest Little Ice Age moraines date to the mid-18th century, and the youngest to A.D. 1910-30. At nine small glaciers the A.D. 1910-30 moraine represents the Neoglacial maximum; only larger glaciers were more extensive in the 18th century. It is inferred that conditions for glacier growth were less favourable in the 18th century than in A.D. 1880–1910 because of low winter snowfall. Comparison of the relative magnitude of 18th- and 20th-century advances on Lyngshalvöya with those of southern Norway suggests that the diminished winter precipitation was due to the southerly location of the North Atlantic oceanic polar front in the 18th century, which resulted in a reduction in winter cyclonic activity in northern Scandinavia but in an increase in snowfall farther south. 相似文献
17.
The Kenai Peninsula of south‐central Alaska is a region of high topographic diversity with a complex glacial history. The sedimentary record of two small lakes [Sunken Island (SIL; 76 m a.s.l.) in the Kenai Lowlands; Choquette (CL; 527 m a.s.l.) in the Caribou Hills upland] exemplifies the postglacial development of the conifer–hardwood forest over an elevational range there. A herb–shrub tundra was established at both sites after deglaciation. By ~10.7 ka, poplar (Populus sp.) and alder (Alnus) dominated the lowland forest, while alder with minor poplar occurred at the upland site. Lake levels lower than today occurred during the early Holocene until ~8 ka. Subsequently at SIL, the near‐modern Kenai birch (Betula kenaica) – white spruce (Picea glauca) forest maintained prominence throughout the Holocene. However, at CL, alder dominated with dwarf birch and other subshrubs; small amounts of white spruce arrived ~5.2 ka. Black spruce (Picea mariana) grew around SIL by ~4 ka, but never gained prominence at CL. Fire, a prominent agent of disturbance in the Kenai Lowlands since ~8 ka, was essentially absent at the hardwood‐dominated upland site before ~6 ka, and rare thereafter. This suggests an important link between fire and spruce in Kenai forests. 相似文献
18.
Two sedimentary cores with pollen, charcoal and radiocarbon data are presented. These records document the Late‐glacial and Holocene dry forest vegetation, fire and environmental history of the southern Cauca Valley in Colombia (1020 m). Core Quilichao‐1 (640 cm; 3° 6′N, 76° 31′W) represents the periods of 13 150–7720 14C yr BP and, following a hiatus, from 2880 14C yr BP to modern. Core La Teta‐2 (250 cm; 3° 5′N, 76° 32′W) provides a continuous record from 8700 14C yr BP to modern. Around 13 150 14C yr BP core Quilichao‐1 shows an active Late‐glacial drainage system and presence of dry forest. From 11 465 to 10 520 14C yr BP dry forest consists mainly of Crotalaria, Moraceae/Urticaceae, Melastomataceae/Combretaceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation Andean forest comprising Alnus, Hedyosmum, Quercus and Myrica was common. After 10 520 14C yr BP the floral composition of dry forest changed, with extensive open grass vegetation indicative of dry climatic conditions. This event may coincide with the change to cool and dry conditions in the second part of the El Abra stadial, an equivalent to the Younger Dryas. From 8850 14C yr BP the record from La Teta indicates dry climatic conditions relative to the present, these prevailing up to 2880 14C yr BP at Quilichao and to 2720 14C yr BP at La Teta. Severe dryness reached maxima at 7500 14C yr BP and 4300 14C yr BP, when dry forest reached maximum expansion. Dry forest was gradually replaced by grassy vegetation, reaching maximum expansion around 2300 14C yr BP. After 2300 14C yr BP grassy vegetation remains abundant. Presence of crop taxa (a.o. Zea mays), disturbance indicators (Cecropia) and an increase in charcoal point to the presence of pre‐Columbian people since 2300 14C yr BP. After 950 14C yr BP, expansion of secondary forest taxa may indicate depopulation and abandonment of previously cultivated land. After 400 14C yr BP, possibly related to the Spanish conquest, secondary forest expanded and charcoal concentrations increased, possibly indicating further reduction of cultivated land. During the past century, Heliotropium and Didymopanax became abundant in an increasingly degraded landscape. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
19.
Beetle remains from a small bog in southern Sweden contribute information concerning the forest history of the study area. The study shows that beetles are valuable indicators of woodland structures such as openness, field vegetation, presence of dead wood and disturbance factors such as climate change, fire regimes, grazing and land use. The early Holocene, ca. 8600–6450 cal. BC, was characterised by open, pine‐dominated woodlands maintained by fire and grazing disturbances. The changes in the wetland fauna, between 8600 and 7500 cal. BC, correlate well with low lake levels in southern Sweden. During the mid Holocene, ca. 6450–2400 cal. BC, the woodlands were relatively dense, with few openings in the canopy. Around 4200 cal. BC, there was a shift to a dominance of deciduous trees. Fire and grazing pressures were particularly low. Numbers of aquatic and hygrophilic beetles indicate dry conditions between ca. 5000 and 3000 cal. BC. During the late Holocene, ca. 2400 cal. BC to present, the woodlands opened up mainly through increased land use. The main disturbance factors were fire and grazing. The beetles indicate the formation of heather‐dominated heathland around 800 cal. BC. Copyright © 2008 John Wiley & Sons, Ltd. This article was published online on 23 December 2008. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected (5 August 2009). 相似文献
20.
Lying athwart both the temperate and subtropical zones, the Ning‐Zhen Mountains are particularly prone to extreme floods in the summer months when cold fronts collide with the subtropics‐derived warm airmasses. The Holocene flood deposits in the region may provide a long‐term perspective on hydrographical change and its palaeoclimatic implications. Radiocarbon dates on carbonised wood preserved in flooding sediments reveal that the region has experienced a number of catastrophic floods throughout the middle Holocene. These extreme flooding events cluster into three periods: (i) 9200–8200 cal. yr BP, (ii) 7600–5800 cal. yr BP and (iii) 5200–4000 cal. yr BP, corresponding to the times when the East Asian monsoon has been intensified under warm conditions. The significant falls in flooding frequency around 8200 cal. yr BP, 5800 cal. yr BP and 4000 cal. yr BP may have resulted from substantial reduction in regional precipitation, probably associated with meridional displacement of the planetary frontal system. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献