共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对多源遥感影像之间成像机理不同、非线性光谱辐射畸变大以及灰度梯度差异明显等所导致的匹配困难问题,提出深度特征融合匹配算法(Feature Fusion Matching Algorithm, FFM)。(1)通过构建特征图金字塔网络提取影像深度特征,使用特征连接结构将语义丰富的高层特征与定位精确的低层特征互补融合,解决多源影像同名特征难以表征的问题并提高特征向量的定位精度;(2)对原始维度1/8的特征图进行交叉变换来融合自身邻域信息与待匹配影像特征信息,通过计算特征向量间的相似性得分得到初次匹配结果,针对特征稀疏区域,提出滑动窗口自适应得分阈值检测算法来提升匹配效果;(3)将匹配结果映射至亚像素级特征图,在小窗口内计算像素间的匹配概率分布期望值来检校优化匹配结果,提高匹配点对的准确性;(4)使用PROSAC算法对匹配结果进行提纯,有效剔除误匹配的同时最大限度保留正确匹配点。试验选取6对多源遥感影像,将FFM同SuperPoint、SIFT、ContextDesc以及LoFTR算法进行对比,结果表明FFM算法在匹配点正确率、匹配点均方根误差以及分布均匀度等方面远优于其他算法。将FFM匹... 相似文献
3.
特征匹配是面阵摆扫式航空影像处理的关键步骤,针对传统特征匹配方法在面阵摆扫式航空影像匹配时存在匹配点数量少,分布不匀均的问题,本文提出一种基于自适应亮度空间的特征匹配方法。首先根据影像POS(Postion Oriental System)信息求解待匹配影像间变换关系进行影像校正,在校正后的影像上构建自适应亮度空间,使用ORB算子和BEBLID算法在亮度空间上获取特征点和二进制特征描述符,然后基于汉明距离获取初始匹配点,使用RANSAC算法剔除粗差,最后将匹配点变换到原始影像上得到最终匹配结果。本文选取6组具有视角差异及亮度变化的面阵摆扫式航空影像进行实验,将本文算法与SIFT、SURF、ORB、ORB+BEBLID、ASIFT等匹配方法进行比较,结果表明:本文算法通过建立影像间变换关系,构建自适应亮度空间,使得算法提取的特征点数量增加1.5倍,获取匹配点数量是其他算法的3倍以上,且匹配点分布更加均匀,匹配效率高于其他算法,验证了本文算法在具有亮度变化及视角差异的面阵摆扫式航空影像上匹配的有效性。 相似文献
4.
针对现有传统影像匹配在星载平台有限的存储及算力条件下难以快速计算的问题,本文提出一种适用于星载平台的、基于哈希学习的轻量化快速影像匹配方法。该方法以同源卫星影像的特征描述符作为训练集计算哈希函数,并利用训练好的哈希函数将特征点的浮点型特征描述符映射至汉明空间,实现特征点对间相似度的快速计算,进一步通过剔除误匹配点获得精确匹配结果。同时,训练集中的特征描述符的种类可根据星载平台载荷的传感器类型、影像分辨率及目标区域影像的地貌类型进行灵活选择,使得本文方法具备良好的可重构性;计算汉明距离衡量特征点对间的相似度,提高本文方法在星载平台轻量化处理的应用能力。选取不同时刻资源三号卫星影像及高分七号卫星影像进行匹配对比实验,本文方法轻量化处理后的LW-SIFT方法相较于经典SIFT方法,在耗时方面减少50.12%,且增加正确匹配点数达20.28%。实验结果表明,本文方法能够显著提升影像匹配的精确度及时效性,有较大的应用潜力,能够为星载平台应用提供有力支撑。 相似文献
5.
6.
面对实际的遥感影像分类任务,采用深度神经网络的方法存在的最大问题是缺乏充足的标注样本,如何使用较少的标注样本实现较高精度的遥感影像分类,是目前需要解决的问题。ImageNet作为世界上最大的图像识别数据集,在其上训练出的模型有着丰富的底层特征。对ImageNet预训练模型进行微调是最常见的迁移学习方法,能够一定程度利用其丰富的底层特征,提高分类精度。但ImageNet影像特征与遥感影像差距较大,对分类效果提升有限。为了解决上述问题,本文基于传递迁移学习思想,结合深度神经网络,提出一种基于深度传递迁移学习的遥感影像分类方法。该方法通过构建以开源遥感场景识别数据集为源域的中间域,并以ImageNet预训练权重为源域、待分类遥感影像为目标域进行迁移学习,提高遥感影像分类精度。首先,以ImageNet预训练VGG16网络为基础,为加速卷积层权重更新而将全连接层替换为全局平均池化层,构建GAP-VGG16,使用中间域数据集训练ImageNet预训练GAP-VGG16以获取权重;然后,以SegNet网络为基础,在SegNet中加入卷积层设计了T-SegNet,以对获取的权重进一步地提取。最后,将获... 相似文献
7.
针对无人机倾斜影像存在匹配困难问题,提出融合多种特征优势的无人机影像匹配算法。首先,提取MSER(Maximally Stable Extremal Regions)局部特征稳定区域,并用SIFT(Scale Invariant Feature Transform)描述子对特征进行描述;其次,利用K-D树的搜索策略进行特征点的快速检索,采用NND算法获取初始的粗匹配点对,根据结果计算影像间的仿射变换关系;最后,对SIFT特征点进行约束NCC匹配,利用RANSAC算法剔除外点,完成最终的影像匹配。实验结果表明,该算法对存在较大倾斜角度的无人机影像效果较好,在匹配正确率和仿射不变性两方面都优于SIFT算法。 相似文献
8.
遥感影像目标检测在城市规划、自然资源调查、国土测绘、军事侦察等领域有着广泛的应用价值。针对遥感影像目标检测在目标尺度变化大、目标外观相似性高以及背景复杂度高等方面的难点,本文提出了一种新的目标检测算法,该算法有效融合了多元稀疏特征提取模块(MNB)和阶层深度特征融合模块(HDFB)。多元稀疏特征提取模块以多个卷积分支结构来模拟神经元的多个突触结构提取稀疏分布的特征,随着网络层的堆叠获取更大感受野范围内的稀疏特征,从而提高捕获的多尺度目标特征的质量。阶层深度特征融合模块基于空洞卷积提取不同深度的上下文信息特征,然后提取特征通过独创的树状融合网络,从而实现局部特征与全局特征在特征图级别的融合。本文算法在大规模公开数据集DIOR进行验证,实验结果表明:(1)多元稀疏特征提取模块和阶层深度特征融合模块相结合的方法总体准确率达到72.5%,单张遥感影像的平均检测耗时为3.8毫秒;(2)通过使用多元稀疏特征提取模块,多尺度和外观相似性目标的检测精度得到了提高,与使用Step-wise分支的物体检测结果相比,总体精度提高了5.8%;(3)通过阶层深度特征融合模块的多感受野深度特征融合网络提取阶层深度... 相似文献
9.
针对目前基于深度学习与高分辨率遥感影像的建筑物提取研究现状,本文提出了一种综合ResNet中的ResBlock残差模块和Attention注意力机制的改进型Unet网络(Res_AttentionUnet),并将其应用于高分辨率遥感影像建筑物提取,有效地提高了建筑物的提取精度。具体优化方法为:在传统的Unet语义分割网络卷积层中加入针对初高级特征加强提取的ResBlock残差模块,并在网络阶跃连接部分加入Attention注意力机制模块。其中,ResBlock残差模块使卷积后的特征图获取更多的底层信息,增强卷积结构的鲁棒性,从而防止欠拟合;Attention注意力机制可增强对建筑物区域像素的特征学习,使特征提取更完善,从而提高建筑物提取的准确率。本研究采用武汉大学季顺平团队提供的开放数据集(WHU Building Dataset)作为实验数据,并从中选取3个具有不同建筑物特征和代表性的实验区域,然后分别对不同实验区域进行预处理(包括滑动裁剪和图像增强等),最后分别使用Unet、ResUnet、AttentionUnet和Res_AttentionUnet 4种不同的网络模型对3个不同实验区进行建筑物提取实验,并对实验结果进行交叉对比分析。实验结果表明,与其他3种网络相比,本文所提出的Res_AttentionUnet在基于高分辨率遥感影像的建筑物提取中具有更高的精度,平均提取精度达到95.81%,相较于原始Unet网络提升17.94%,同时相较于仅加入残差模块的Unet网络(ResUnet)提升2.19%,能够显著地提升高分辨率遥感影像中建筑物提取的效果。 相似文献
10.
目前遥感影像跨视角匹配技术无法直接使用大幅卫星影像进行匹配,难以满足大范围复杂场景匹配的任务需求,且依赖大规模数据集,不具备良好的泛化能力。针对上述问题,本文在质量感知模板匹配方法的基础上结合多尺度特征融合算法,提出一种基于视角转换的跨视角遥感影像匹配方法。该方法首先利用手持摄影设备采集地面多视影像,经密集匹配生成点云数据,利用主成分分析法拟合最佳地平面并进行投影变换,以实现地面侧视视角到空视视角的转换;然后设计了特征融合模块对VGG19网络从遥感影像中提取的低、中、高尺度特征进行融合,以获取遥感影像丰富的空间信息和语义信息;最后利用质量感知模板匹配方法将从视角转换后的地面影像上提取的特征与遥感影像的融合特征进行匹配,获取匹配的软排名结果,并采用非极大值抑制算法从中筛选出高质量的匹配结果。实验结果表明,在不需要大规模数据集的情况下本文方法具有较高的准确性和较强的泛化能力,平均匹配成功率为64.6%,平均中心点偏移量为5.9像素,匹配结果准确完整,可为大场景跨视角影像匹配任务提供一种新的解决方案。 相似文献
11.
12.
不透水面是衡量城市生态环境状况的重要指标。城市土地利用的复杂性和不透水表面材料的多样性,导致直接从高分辨率遥感影像中提取不透水表面具有挑战性。针对城市尺度高分辨率遥感影像的不透水面提取要求,本文提出基于深度学习的城市不透水面提取模型。首先,利用深度卷积神经网络对影像特征进行提取;然后,根据其邻域关系构建概率图学习模型,进一步引入高阶语义信息对特征进行优化,实现不透水面的精确提取。本文选取武汉市为实验区,以高分二号卫星遥感影像作为数据源,完成了不透水面专题信息提取,其中自动提取准确率在建成区为89.02%、在城乡结合部为95.55%。与随机森林(RF)和支持向量机(SVM)等经典方法对比,结果表明深度学习不透水面提取方法有较高的提取精度和细节准确性,建成区的总体精度相比于RF和SVM算法分别提升2.18%和1.68%。最后,对武汉市各主要行政区不透水面信息进行统计和分析,结果表明其中江汉区和武昌区2个核心主城区不透水面占比超过60%,并对武汉市现状和发展规划特点进行了讨论。本文研究成果可为海绵城市和生态城市的建设提供基础技术支撑和数据参考。 相似文献
13.
高光谱影像标记样本的获取通常是一项费时费力的工作,如何在小样本条件下提高影像的分类精度是高光谱影像分类领域面临的难题之一。现有的高光谱影像分类方法对影像的多尺度信息挖掘不够充分,导致在小样本条件下的分类精度较差。针对此问题,本文设计了一种面向高光谱影像小样本分类的全局特征与局部特征自适应融合方法。该方法基于动态图卷积网络和深度可分离卷积网络,分别从全局尺度和局部尺度挖掘影像的潜在信息,实现了标记样本的有效利用。进一步引入极化自注意力机制,在减少信息损失的同时提升网络的特征表达,并采用特征自适应融合机制对全局特征和局部特征进行自适应融合。为验证本文方法的有效性,在University of Pavia、Salinas、WHU-Hi-LongKou和WHU-Hi-HanChuan4组高光谱影像基准数据集上开展分类试验。试验结果表明,与传统分类器和先进的深度学习模型相比,本文方法兼顾执行效率和分类精度,在小样本条件下能够取得更为优异的分类表现。在4组数据集上的总体分类精度分别为99.01%、99.42%、99.18%和95.84%,平均分类精度分别为99.31%、99.65%、98.89%和... 相似文献
14.
在综合考虑多个特征因子的线要素匹配时,根据经验知识确定各特征因子的权值会造成人为误差。针对该问题,本文提出了基于人工神经网络的多特征因子路网匹配算法,根据线要素的几何和拓扑特性选取长度、方向、形状、距离及拓扑5个特征因子的相似度作为路网匹配参考因子。首先,分别在参考图层和待匹配图层中选取样本数据组成样本对,计算样本数据的5个特征因子相似度,用样本数据的5个特征因子相似度和样本的匹配度组成学习模式对;然后,利用BP神经网络的误差反向传播机制自动学习调整各神经层之间的连接权值;最后,输入全部数据,计算参考图层的弧段和待匹配图层的弧段间的匹配度,实现综合多特征因子的路网匹配。实验结果表明,利用人工神经网络进行综合多特征因子的路网匹配可以提高匹配效率和匹配准确度。 相似文献
15.
采用立体匹配技术对多视卫星遥感影像进行三维场景重建一直是摄影测量与遥感领域的核心问题。基于卷积神经网络的深度学习方法极大地促进了立体匹配技术的发展,然而其中涉及匹配困难和误匹配问题的相关研究仍然不足。为了提升卫星遥感影像不适定区域中视差估计的精度,本研究提出了一种结合注意力机制的立体匹配深度学习网络,在特征提取模块中加入注意力机制,分别从通道和空间两个维度捕获全局信息,对特征进行优化;在代价体的构建模块中构建新的代价体积,并重新设置视差的回归范围。为了验证本文方法的有效性,在US3D、WHU-Stereo两个数据集上分别与已有方法 Stereo-Net、PSM-Net进行了比较分析。结果表明,本文方法在EPE(endpointerror)和D1两个指标上均能达到最优,取得了较好的性能,提高了立体匹配的精度,尤其在无纹理、重复纹理、遮挡及视差不连续区域表现出良好的鲁棒性。 相似文献
16.
图像匹配作为三维重建至关重要的环节,其精度直接影响了平差优化、正射校正等模块的精度。对于城镇、农场等特征密集型区域,特征距离小,相似性强,易于匹配图像;而针对草地、沙漠等特征不明显区域,特征距离大,如果使用特征点匹配的方法,严格阈值下难以获得足够数量的匹配对,放宽阈值又将引入较多误匹配对,这也是导致稀疏点云不够均匀的原因之一。在此场景下,本文提出了基于动态极坐标参数化的无人机正视影像匹配算法,首先对图像做极坐标参数变化,采用动态策略解决极轴方向采样不均匀的问题,使用最小二乘法对得到的极坐标影像对做位移方向上的匹配,匹配后得到的旋转量和平移量,将该结果和SIFT算法的结果做比较。本文设计了2组实验,即参数已知的解算实验和参数未知的解算实验,且每组实验进行3次。在同等配置的计算机上,对两张7360像素×5400像素,32位的影像,本文方法的位姿解算时间相比SIFT的时间减少约57%,二者求得的位姿差通常小于1%。结论表明二者的结果在精度上表现相当,在时间上明显优于SIFT算法,具有实际的应用价值。 相似文献
17.
针对现有由稀到密的加密匹配算法中,初始匹配点可靠性低将导致迭代匹配拓展过程存在较多误匹配的问题,提出一种基于可靠匹配点约束的遥感影像密集匹配算法.首先,利用SIFT匹配点约束直线匹配获得的同名直线构建虚拟匹配点集,结合虚拟匹配点集和SIFT匹配点集建立初始匹配点集;然后,依次采用局部影像信息和局部几何约束对初始匹配点集... 相似文献
18.
随着村镇经济建设发展,生活垃圾和工业固体废弃物造成的污染问题日益突出,已经成为制约新农村建设发展和生态文明建设的关键问题,而目前针对乡镇非正规固体废弃物的调查与统计主要依赖全国各乡镇相关部门逐级调查上报,工作量较大。本文基于高分辨率遥感影像,将深度学习模型和条件随机场模型相结合引入到乡镇固体废弃物的提取研究中,探索一种基于深度卷积神经网络的乡镇固体废弃物提取模型。由于固体废弃物在影像上表现为面积小,分布破碎等特点,为了提高工作效率,将模型特分为识别和提取2个部分:① 通过全连接卷积网络(CNN)对固体废弃物进行快速识别判断,筛选感兴趣区域影像块;② 在传统的全卷积神经网络(FCN)的基础上加入条件随机场模型(CRF)提取固体废弃物边界,提高整体分割精度。根据安徽、山西等地区相关部门上报固体废弃物堆放点以及住房与城乡建设部城乡规划管理中心进行野外检查的结果,实验最终识别精度达到86.87%以上;形状提取精度为89.84%,Kappa系数为0.7851,识别与提取精度均优于传统分类方法。同时,该方法已经逐步应用于住房和城乡建设部有关成都、兰州、河北等部分乡镇非正规固体废弃物的核查工作,取得了较为满意的结果。 相似文献
19.
高分辨率遥感影像中,道路光谱信息丰富,且空间几何结构更清晰。但是,基于高分遥感影像的道路提取面临道路尺寸变化大、容易受树木、建筑物及阴影遮挡等因素影响,导致提取结果不完整。此外,高分遥感影像中同物异谱和异物同谱现象较为严重,从而影响道路提取结果连续性及细小道路信息完整性,而且难以区分道路和非道路不透水层。因此,本文提出基于双注意力残差网络的道路提取模型DARNet,利用深度编码网络,获取细粒度高阶语义信息,增强网络对细小道路的提取能力,通过嵌入串联式通道-空间双重注意力模块,获取道路特征图逐通道的全局语义信息,实现道路特征的高效表达及多尺度道路信息的深层融合,增强阴影和遮挡环境下网络模型的鲁棒性,改善道路提取细节缺失现象,实现复杂环境下高效、准确的道路自动化提取。本文在3个实验数据集对DARNet和DLinkNet、DeepLabV3+等5个对比模型进行对比试验和定量评估,结果表明,本文DARNet模型的F1分别为77.92%、67.88%和80.37%,高于对比模型。此外,定性比较表明,本文提出模型可以有效克服由于物体阴影、遮挡和高分影像光谱变化导致道路提取不准确与不完整问题,改善细... 相似文献
20.
近年来,城市发展快速,大量人口奔向城市工作生活,城市建筑物的数量有如雨后春笋般扩张,需要合理地规划城市土地资源,遏制违规乱建现象,因此基于高分辨率遥感影像,对建筑物进行准确提取,对城市规划和管理有着重要辅助作用.本文基于U-Net网络模型,使用美国马萨诸塞州建筑物数据集,对网络模型结构进行探究,提出了一种激活函数为EL... 相似文献