首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Fine-grained fluvial residual channel infillings are likely to reflect systematic compositional changes in response to climate change, owing to changing weathering and geomorphological conditions in the upstream drainage basin. Our research focuses on the bulk sediment and clay geochemistry, laser granulometry and clay mineralogy of Late-glacial and Early Holocene River Meuse (Maas) unexposed residual channel infillings in northern Limburg (The Netherlands). We demonstrate that residual channel infillings register a systematic bulk and clay compositional change related to climate change on a 1–10 k-yr time-scale. Late-glacial and Holocene climatic amelioration stabilised the landscape and facilitated prolonged and intense chemical weathering of phyllosilicates and clay minerals due to soil formation. Clay translocation and subsequent erosion of topsoils on Palaeozoic bedrock and loess deposits increased the supply of smectite and vermiculite within River Meuse sediments. Smectite plus vermiculite contents rose from 30–40% in the Pleniglacial to 60% in the Late Allerød and to 70–80% in the Holocene. Younger Dryas cooling and landscape instability caused almost immediate return to low smectite and vermiculite contents. Following an Early Holocene rise, within about 5000 yr, a steady state supply is reached before 5 ka (Mid-Holocene). Holocene sediments therefore contain higher amounts of clay that are richer in high-Al, low-K and low-Mg vermiculites and smectites compared with Late (Pleni-)glacial sediments. The importance of clay mineral provenance and loess admixture in the River Meuse fluvial sediments is discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
The late‐glacial Bølling period was first identified by Johs. Iversen on the basis of pollen results from Lake Bølling Sø in Denmark. Because there were no radiocarbon dates from the sequence the Bølling Chronozone (12 000–13 000 14C yr BP) was later established on the basis of dates from other sites. A new project is reinvestigating the sediments from the Bølling Sø sequence with AMS radiocarbon dating and multiproxy analyses. Here we present results of AMS radiocarbon dating, macrofossil analyses, cladoceran analyses (Cladocera concentrations and chydorid ephippia) and Pediastrum analyses (concentrations). The AMS dates on land plant remains show that the lower part of the sequence is around 12 500 14C yr BP, and thus clearly pre‐dates the Allerød chronozone. However, construction of a chronology for the sequence was problematic, partly because of reworking of macroscopic plant remains. The climate ameliorated after glacial conditions to such an extent that growth of plants could begin at ca. 12 500 14C yr BP, but the results of multiproxy analyses show little evidence for a further warming period during the pre‐Allerød part of the sequence. Lake productivity was low, and tree birch rare or maybe absent. This may reflect widespread occurrence of dead ice, unstable soils, heavy in‐wash of minerogenic matter to the lake, resulting in turbid water and rapid sedimentation. The early pioneer vegetation was characterised by Salix polaris and Dryas octopetala, and by herbs. The Allerød Chronozone, and especially its initial part, appears to have been relatively warm but reduced cladoceran concentrations and increased proportion of chydorid ephippia suggest that climate cooled in the middle Allerød and that the late Allerød was colder than the early part. The early Younger Dryas was probably colder than the late Younger Dryas. Clear warming is apparent at the beginning of the Holocene, where the first macrofossil evidence of trees (Betula pubescens, Populus tremula) is found. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A detailed shoreline displacement curve documents the Younger Dryas transgression in western Norway. The relative sea‐level rise was more than 9 m in an area which subsequently experienced an emergence of almost 60 m. The sea‐level curve is based on the stratigraphy of six isolation basins with bedrock thresholds. Effort has been made to establish an accurate chronology using a calendar year time‐scale by 14C wiggle matching and the use of time synchronic markers (the Vedde Ash Bed and the post‐glacial rise in Betula (birch) pollen). The sea‐level curve demonstrates that the Younger Dryas transgression started close to the Allerød–Younger Dryas transition and that the high stand was reached only 200 yr before the Younger Dryas–Holocene boundary. The sea level remained at the high stand for about 300 yr and 100 yr into Holocene it started to fall rapidly. The peak of the Younger Dryas transgression occurred simultaneously with the maximum extent of the ice‐sheet readvance in the area. Our results support earlier geophysical modelling concluding a causal relationship between the Younger Dryas glacier advance and Younger Dryas transgression in western Norway. We argue that the sea‐level curve indicates that the Younger Dryas glacial advance started in the late Allerød or close to the Allerød–Younger Dryas transition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The Niers valley was part of the Rhine system that came into existence during the maximum Saalian glaciation and was abandoned at the end of the Weichselian. The aim of the study was to explain the Late Pleniglacial and Late Glacial fluvial dynamics and to explore the external forcing factors: climate change, tectonics and sea level. The sedimentary units have been investigated by large‐scale coring transects and detailed cross‐sections over abandoned channels. The temporal fluvial development has been reconstructed by means of geomorphological relationships, pollen analysis and 14C dating. The Niers‐Rhine experienced a channel pattern change from braided, via a transformational phase, to meandering in the early Late Glacial. This change in fluvial style is explained by climate amelioration at the Late Pleniglacial to Late Glacial transition (at ca. 12.5 k 14C yr BP) and climate‐related hydrological, lithological and vegetation changes. A delayed fluvial response of ca. 400 14C yr (transitional phase) was established. The channel transformations are not related to tectonic effects and sea‐level changes. Successive river systems have similar gradients of ca. 35–40 cm km?1. A meandering river system dominated the Allerød and Younger Dryas periods. The threshold towards braiding was not crossed during the Younger Dryas, but increased aeolian activity has been observed on the Younger Dryas point bars. The final abandonment of the Niers‐Rhine was dated shortly after the Younger Dryas to Holocene transition. Traces of Laacher See pumice have been found in the Niers valley, indicating that the Niers‐Rhine was still in use during the Younger Dryas. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Changing river courses and fluctuations of the water table were some of the most fundamental environmental changes that humans faced during the Late Glacial, particularly as these changes affected areas intensively used for settlement and resource exploitation. Unfortunately, only a few stratigraphies have been documented in the North European plain that show the interaction between river development, vegetation history, and occupation by Late Palaeolithic humans. Here, we present the results of detailed stratigraphical studies (pedology, archaeology, chrono‐, tephra‐, and palynostratigraphy) at the Federmesser site Grabow 15 located in the broad Elbe River valley. The research aimed to produce a model of site formation based on a multiproxy approach, relating the local evidence to the palaeoenvironmental and settlement history of the wider region. After deposition of fluvial sands during the Late Pleniglacial in a braided setting, the river course developed locally toward a meandering system at the transition from the Older Dryas to the Allerød, while periodic flooding led to the deposition of floodplain sediments during the early Allerød. The floodplain was settled by people of the earliest “Federmessergruppen,” who are believed to have chosen this open floodplain area along the river for collecting and processing amber of local origin. Their artifacts became embedded in the aggrading floodplain sediments. In the late Allerød, floodplain sedimentation ceased and a Fluvisol‐type soil developed, indicating a trend toward geomorphic stability. The Fluvisol was then covered by silty floodplain sediments due to a rising water level during the late Younger Dryas resulting in the cessation of human occupation in the area. Subsequent organic‐rich Late Glacial/Holocene sediments preserved the settlement remains to the present.  相似文献   

7.
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine‐grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9–7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large‐scale sliding on the continental margin off Norway (the Storegga Tsunami). During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea‐surface summer temperatures, possibly with year‐round sea‐ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea‐surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4–9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4–0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large‐scale oceanic circulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
A chironomid–July air temperature inference model based on chironomid assemblages in the surface sediments of 81 Swiss lakes was used to reconstruct Late Glacial July air temperatures at Lac Lautrey (Jura, Eastern France). The transfer‐function was based on weighted averaging–partial least squares (WA‐PLS) regression and featured a leave‐one‐out cross‐validated coefficient of determination (r2) of 0.80, a root mean square error of prediction (RMSEP) of 1.53 ° C, and was applied to a chironomid record consisting of 154 samples covering the Late Glacial period back to the Oldest Dryas. The model reconstructed July air temperatures of 11–12 ° C during the Oldest Dryas, increasing temperatures between 14 and 16.5 ° C during the Bølling, temperatures around 16.5–17.0 ° C for most of the Allerød, temperatures of 14–15 ° C during the Younger Dryas and temperatures of ca. 16.5 ° C during the Preboreal. The Lac Lautrey record features a two‐step July air temperature increase after the Oldest Dryas, with an abrupt temperature increase of ca. 3–3.5 ° C at the Oldest Dryas/Bølling transition followed by a more gradual warming between ca. 14 200 and 13 700 BP. The transfer‐function reconstructs a less rapid cooling at the Allerød/Younger Dryas transition than other published records, possibly an artefact caused by the poor analogue situation during the earliest Younger Dryas, and an abrupt warming at the Younger Dryas/Holocene transition. During the Allerød, two centennial‐scale 1.5–2.0 ° C coolings are apparent in the record. Although chronologically not well constrained, the first of these cold events may be synchronous with the beginning of the Gerzensee Oscillation. The second is inferred just before deposition of the Laachersee tephra at Lac Lautrey and is therefore coeval with the end of the Gerzensee Oscillation. In contrast to the Greenland oxygen isotope records, the Lac Lautrey palaeotemperature reconstruction lacks a clearly defined Greenland Interstadial (GI) event 1d and the decreasing temperature trend during the Bølling/Allerød Interstadial. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Late‐glacial environmental and climatic implications are inferred from an insect fauna from organic sediments infilling a palaeochannel on the banks of the River Têt, eastern Pyrénées, France. A pine cone in association with the insect fauna has been radiocarbon dated to 10 920 ± 60 yr BP, namely close to the Allerød – Younger Dryas boundary. Two distinct insect associations appear to be recognisable here. One is an assemblage typical of the high altitude forest and a second is characteristic of an alpine grassland. The close coexistence of these two assemblages is attributed to the climatic cooling towards the start of the Younger Dryas Stadial, when the forest cover broke up into remnant patches interspersed by alpine grassland. It is suggested that in a region of such high relief a mosaic of habitats may have been caused by patchy differences in insolation aspect, especially during a period of climatic deterioration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Cryoturbated organic beds and channel fills, intercalated with sandy and gravelly fluvial units, have been studied in an opencast brown‐coal mine near Nochten (Niederlausitz), eastern Germany. The fluvial–aeolian sequence covers parts of the Early, Pleni‐ and Late‐glacial. The detailed chronology is based on 11 radiocarbon and 12 OSL dates, covering the period between ca. 100 kyr and 11 kyr BP. Basal peat deposits are correlated with an Early Weichselian interstadial. During this period boreal forests were present and minimum mean summer temperatures were > 13°C. Early Pleniglacial deposits are absent. The Middle and Late Pleniglacial environments were treeless and different types of tundra vegetation can be recognised. Minimum mean summer temperatures varied between 10 and 15°C. Vegetation and climate is reconstructed in detail for the periods around 34–38 kyr BP and 24–25 kyr BP. Around 34–38 ka, a mixture between a low shrub tundra and a cottongrass tussock–subshrub tundra was present. The botanical and sedimentological data suggest that from the Middle to the Late Pleniglacial, the climate became more continental, aridity and wind strength increased, and the role of a protecting winter snow cover decreased. A sedge–grass–moss tundra dominated around 24 and 25 kyr BP. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The Younger Dryas stadial (11 000-10 000 yr BP) was an abrupt return to a glacial climate during the termination of the last glaciation. We have reconstructed atmospheric CO2 concentrations from a high-resolution sequence of fossil Salix herbacea leaves through this climatic oscillation from Kråkenes, western Norway, using the relationship between leaf stomatal density and atmospheric CO2 concentration. High Allerød CO2 values (median 273 ppmv) decreased rapidly during 130–200 14C-years of the late Allerød to ca. 210 ppmv at the start of the Younger Dryas. They then increased steadily through the Younger Dryas, reaching typical interglacial values once more (ca. 275 ppmv) in the Holocene. The rapid late Allerød decrease in CO2 concentration preceded the Younger Dryas temperature drop, possibly by several decades. This striking pattern of changes has not so far been recorded unambiguously in temporally coarse measurements of atmospheric CO2 from ice cores. Our observed late-glacial CO2 changes have implications for global modelling of the ocean-atmosphere-biosphere over the last glacial-interglacial transition.  相似文献   

13.
Mangerud, J., Gulliksen, S. & Larsen, E. 2009: 14C‐dated fluctuations of the western flank of the Scandinavian Ice Sheet 45–25 kyr BP compared with Bølling–Younger Dryas fluctuations and Dansgaard–Oeschger events in Greenland. Boreas, 10.1111/j.1502‐3885.2009.00127.x. ISSN 0300‐9483. We present 32 accelerator mass spectrometry (AMS) 14C dates obtained on well‐preserved bones from caves in western Norway. The resulting ages of 34–28 14C kyr BP demonstrate that the coast was ice‐free during the so‐called Ålesund Interstadial. New AMS 14C dates on shells aged 41–38 14C kyr BP are evidence of an earlier (Austnes) ice‐free period. The Ålesund Interstadial correlates with Greenland interstadials 8–7 and the Austnes Interstadial with Greenland interstadials 12–11. Between and after the two interstadials, the ice margin reached onto the continental shelf west of Norway. These events can be closely correlated with the Greenland ice core stratigraphy, partly based on identification of the Laschamp and Mono Lake palaeomagnetic excursions. We found that the pattern of the NGRIP δ18O curves for the two periods Greenland Interstadial (GI) 8 to Greenland Stadial (GS) 8 and GI 1–GS 1 (Bølling–Younger Dryas) were strikingly similar, which leads us to suggest that the underlying causes of these climate shifts could have been the same. We therefore discuss some aspects of glacial fluctuations during the Bølling–Younger Dryas in order to elucidate processes during Dansgaard–Oeschger events.  相似文献   

14.
Blomvåg, on the western coast of Norway north of Bergen, is a classical site in Norwegian Quaternary science. Foreshore marine sediments, named the Blomvåg Beds and now dated to the Bølling‐Allerød from 14.8 to 13.3 cal. ka BP, contain the richest Lateglacial bone fauna in Norway, numerous mollusc shells, driftwood, and flint that some archaeologists consider as the oldest traces of humans in Norway. The main theme of this paper is that the Blomvåg Beds are overlain by a compact diamicton, named the Ulvøy Diamicton, which was interpreted previously as a basal till deposited during a glacial re‐advance into the ocean during the Older Dryas (c. 14 cal. ka BP). Sediment sections of the Blomvåg Beds and the Ulvøy Diamicton were exposed in ditches in a cemetery that was constructed in 1941–42 and have subsequently not been accessible. A number of radiocarbon and cosmogenic 10Be exposure ages demonstrate that the diamicton is not likely to be a till because minimum deglaciation ages (14.8–14.5 cal. ka BP) from the vicinity pre‐date the Ulvøy Diamicton. We now consider that sea ice and icebergs formed the Ulvøy Diamicton during the Younger Dryas. The Scandinavian Ice Sheet margin was located on the outermost coastal islands between at least c. 18.5 and 14.8 cal. ka BP; however, no ice‐marginal deposits have been found offshore from this long period. The Older Dryas ice margin in this area was located slightly inside the Younger Dryas margin, whereas farther south it was located slightly beyond the Younger Dryas margin.  相似文献   

15.
A Lateglacial and early Holocene sequence of coleopteran assemblages is described from La Taphanel in the Massif Central, France. The site is a sediment-filled small lake at an altitude of almost 1000 m. The insect fauna provides evidence for a detailed palaeoecological reconstruction, and in particular enables a reconstruction of climatic changes at the close of the last glaciation. A sudden climatic warming occurs at about 13000 yr BP followed by a temperate episode equivalent in time to the Bølling period. There is clear evidence of a short cold period between the Bølling and Allerød that is approximately equivalent to the Older Dryas period. The Allerød phase is decidedly cooler than the Bølling, as is shown by the Coleoptera from several sites in northwest Europe. A clear Younger Dryas signal is provided by the Coleoptera, with climates similar in severity to those of the glacial period. The climatic improvement at the start of the Holocene is also sudden, so that by Preboreal times temperatures were equivalent to those of the present day.  相似文献   

16.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   

17.
This paper provides the first radiometrically dated evidence of Holocene alluvial landform development in Upper Wharfedale, Yorkshire Dales. Four river terraces are identified. Terraces 1 and 2 are closely linked to Late Devensian and early Holocene environmental change, with gravel reworked from local glacial and periglacial sources prior to cementation by carbonate‐rich waters. U‐series dating of cement provides age estimates for cementation of between ca. 5.1–7.4 kyr BP for Terrace 1 and ca. 3.6–>8.0 kyr BP for Terrace 2. U‐series dating of tufas overlying Terraces 1 and 2 produced ages of ca. 4.2–4.5 kyr BP and ca. 2.1–2.2 kyr BP respectively, and provide upper age limits for terrace formation. Terrace 3 marks a change in sediment calibre, supply and sedimentation style, and 14C dating suggests that the principal source of fine‐grained material may be agricultural expansion in the Yorkshire Dales from ca. ad 600 (1350 cal. yr BP). Radiocarbon dates indicate that Terrace 4 was deposited from the eleventh century, with initiation of the contemporary floodplain between the fifteenth and seventeenth centuries ad. Both these lowest units contain sediments contaminated with heavy metals as a result of mining activities within the catchment. The evidence presented in this study is comparable to that of research undertaken in upland environments elsewhere in northern and western Britain, thereby adding to the corpus of information currently available for evaluating the fluvial geomorphological response to climate and vegetation change during the Holocene. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Stanford, S. D. 2009: Onshore record of Hudson River drainage to the continental shelf from the late Miocene through the late Wisconsinan deglaciation, USA: synthesis and revision. Boreas, 10.1111/j.1502‐3885.2009.00106.x. ISSN 0300‐9483. Fluvial and glacial deposits in New Jersey, Long Island, and the Hudson valley provide a record of Hudson River drainage since the late Miocene. Late Miocene fluvial deposits record southerly flow across the emerged inner New Jersey shelf. In the late Miocene–early Pliocene this drainage incised, shifted southwesterly, and discharged to the shelf south of New Jersey. During late Pliocene or Early Pleistocene glaciation, discharge to the shelf in the New York City area was established. This drainage incised and stabilized in the Early and Middle Pleistocene and remained open during pre‐Wisconsinan (Oxygen Isotope Stage 6? (OIS‐6?)) and late Wisconsinan (OIS‐2) glacial advances. During late Wisconsinan retreat, moraine deposits dammed the valley at the Narrows to form Lake Albany. From 19 to 15.5 kyr BP (all dates in 14C yr), Hudson drainage was directed eastward into the Long Island Sound lowland. Drainage of Lake Wallkill into Lake Albany at 15.5 kyr BP breached the Narrows dam and initiated the unstable phase of Lake Albany, which was controlled by eroding spillways, first on the moraine dam, then on emerged lake‐bottom in the mid‐Hudson valley. Marine incursion between 12 and 11 kyr BP limited fluvial incision of the lake bottom, stabilizing the Quaker Springs, Coveville, and upper Fort Ann spillways. Lowering sea level between 11 and 10 kyr BP allowed incision from the upper to lower Fort Ann threshold. Sediment eroded by lake outflows between 15 and 10.5 kyr BP was trapped in the glacially deepened lower valley. Little inland sediment reached the shelf after 20 kyr BP.  相似文献   

19.
The Magdalen Islands are a valuable terrestrial record, evidencing the complex glacial and periglacial history of the Gulf of St. Lawrence. Thirteen structures interpreted as ice‐wedge pseudomorphs or composite‐wedge casts were observed at four sites on the southern Magdalen Islands and testify to the former presence of permafrost under periglacial conditions. These features truncate Carboniferous sandstone or Last Glacial Maximum (LGM) glacial and glaciomarine diamicts, both overlain by subtidal or coastal units. Six optically stimulated luminescence (OSL) and four radiocarbon ages were obtained from both host and infilled sedimentary units. These ages provide the first absolute chronological data on these structures, shedding new light on the relationships between glacial and periglacial phases. Our chronostratigraphic data suggest that, after the deglaciation and the emersion of the archipelago, thermal contraction cracks grew during the cold period of the Younger Dryas (11–10 ka; 12.9–11.5 cal. ka BP). The Younger Dryas, which is well documented in the Maritime Provinces of Canada, occurred after a pedogenesis phase associated with the Allerød warm period evidenced by the well‐developed palaeopodzol ubiquitous on the Magdalen Islands.  相似文献   

20.
The primary objective of this study is to further substantiate multistep climatic forcing of late‐glacial vegetation in southern South America. A secondary objective is to establish the age of deglaciation in Estrecho de Magallanes–Bahía Inútil. Pollen assemblages at 2‐cm intervals in a core of the mire at Puerto del Hambre (53°36′21″S, 70°55′53″W) provide the basis for reconstructing the vegetation and a detailed account of palaeoclimate in subantarctic Patagonia. Chronology over the 262‐cm length of core is regulated by 20 AMS radiocarbon dates between 14 455 and 10 089 14C yr BP. Of 13 pollen assemblage zones, the earliest representing the Oldest Dryas chronozone (14 455–13 000 14C yr BP) records impoverished steppe with decreasing frequencies and loss of southern beech (Nothofagus). Successive 100‐yr‐long episodes of grass/herbs and of heath (Empetrum/Ericaceae) before 14 000 14C yr BP infer deglacial successional communities under a climate of increased continentality prior to the establishment of grass‐dominated steppe. The Bølling–Allerød (13 000–11 000 14C yr BP) is characterised by mesic grassland under moderating climate that with abrupt change to heath dominance after 12 000 14C yr BP was warmer and not as humid. At the time of the Younger Dryas (11 000–10 000 14C yr BP), grass steppe expanded with a return of colder, more humid climate. Later, with gradual warming, communities were invaded by southern beech. The Puerto del Hambre record parallels multistep, deglacial palaeoclimatic sequences reported elsewhere in the Southern Andes and at Taylor Dome in Antarctica. Deglaciation of Estrecho de Magallanes–Bahía Inútil is dated close to 14 455 14C yr BP, invalidating earlier dates of between 15 800 and 16 590 14C yr BP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号