首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mineralogical, geochemical and zircon U–Pb dating studies were carried out to identify the sources of arsenic in the shallow aquifers of Datong Basin in northern China. A sediment sample from 18 m depth containing 10.3 mg/kg arsenic showed a Zircon U–Pb concordant age of 2528 ± 20 to 271 ± 4 Ma that can be divided into two groups (2528 ± 20 to 1628 ± 21 Ma and 327 ± 4 to 271 ± 4 Ma) and is comparable to that of the sedimentary rocks of Taiyuan (upper Carboniferous) and Shanxi Formation (lower Permian) outcropping to the west of Datong Basin. In contrast, a sediment sample from 22.5 m depth containing 5.7 mg/kg arsenic displayed a Zircon U–Pb concordant age ranging from 2561 ± 21 to 1824 ± 26 Ma that is comparable to that of the Hengshan Complex (Ne-Archaean Precambrian) outcropping to the east of .  相似文献   

2.
We present baddeleyite U–Pb ages of Neoarchaean to Palaeoproterozoic dyke swarms and the Mashonaland sill province in Zimbabwe. The 2575.0 ± 1.5 Ma age of the Umvimeela dyke is indistinguishable from the 2575.4 ± 0.7 Ma result (Oberthür et al., 2002) for a pyroxenite layer of the Great Dyke and testifies to synchronous emplacement of the Great Dyke and its satellites. Three samples of WNW- to NNW-trending dykes of the Sebanga swarm yielded ages of 2512.3 ± 1.8 Ma, 2470.0 ± 1.2 Ma and 2408.3 ± 2.0 Ma, the latter of which dates the Sebanga Poort Dyke of this swarm. These results suggest that emplacement took place over a protracted period which involved at least three generations of dykes within the swarm and, more importantly, invalidate previous inferences of a genetic link between the Sebanga swarm and the Mashonaland sills. Crystallisation ages of 1877 ± 2.2 Ma, 1885.9 ± 2.4 Ma and 1875.6 ± 1.6 Ma for three dolerite samples of the extensive Mashonaland sills from different parts of the Zimbabwe craton were also obtained. This is the oldest common igneous event that is recorded in the Zimbabwe and Kaapvaal cratons. Collectively with previous published geochronological and petrological evidence in favour of a major 2.0 Ga event within the Limpopo Belt, these results suggest that the Zimbabwe and Kaapvaal cratons did not form a coherent unit (Kalahari) until ca. 2.0 Ga.  相似文献   

3.
The dissolution behavior of the barite (0 0 1) surface in pure water at 30 °C was investigated using in situ Atomic Force Microscopy (AFM), to better understand the dissolution mechanism and the microtopographical changes that occur during the dissolution, such as steps and etch pits. The dissolution of the barite (0 0 1) surface started with the slow retreat of steps, after which, about 60 min later, the <hk0> steps of one unit cell layer or multi-layers became two-step fronts (fast “f” and slow “s” steps) with a half-unit cell layer showing different retreat rates. The “f” step had a fast retreat rate (≈(14 ± 1) × 10−2 nm/s) and tended to have a jagged step edge, whereas the “s” step (≈(1.8 ± 0.1) × 10−2 nm/s) had a relatively straight front. The formation of the “f” steps led to the formation of a new one-layer step, where the front of the “s” step was overtaken by that of the immediate underlying “f” step. The “f” steps also led to the decrease of the <hk0> steps and the increase in the percentage of stable steps parallel to the [0 1 0] direction during the dissolution.Etch pits, which could be observed after about 90 min, were of three types: triangular etch pits with a depth of a half-unit cell, shallow etch pits, and deep etch pits. The triangular etch pits were bounded by the step edges parallel to [0 1 0], [1 2 0], and [] and had opposite orientations in the upper half and lower half layers. Shallow etch pits that had a depth of two or more half-unit cell layers had any two consecutive pits pointing in the opposite direction of each other. The triangular etch pit appeared to grow by simultaneously removal of a row of ions parallel to each direction from the three step edges. At first, deep etch pits were elongated in the [0 1 0] direction with a curved outline and then gradually developed to an angular form bounded by the {1 0 0}, {3 1 0}, and (0 0 1) faces. The retreat rate of the (0 0 1) face was much slower than those of the {1 0 0} and {3 1 0} and tended to separate into two rates ((0.13 ± 0.01) × 10−2 nm/s for the deep etch pits derived from a screw dislocation and (0.07 ± 0.01) × 10−2 nm/s for those from other line defects).The changes in the dissolution rate of a barite (0 0 1) surface during the dissolution were estimated using the retreat rates and densities of the various steps as well as the growth rates, density, and areas of the lateral faces of the deep etch pits that were obtained from this AFM analysis. Our results showed that the dissolution rate of the barite (0 0 1) surface gradually increased and approached the bulk dissolution rate because of the change in the main factor determining the dissolution rate from the density of the steps to the growth and the density of the deep etch pits on the surface.  相似文献   

4.
The Po River (Italy) experienced a 100-year flood in October 2000. Surface sediments (0-1 cm) from cross-shelf transects were collected in the Po prodelta area (Adriatic Sea) in December 2000, in order to describe the distribution of organic matter (OM) along the main sediment dispersal system immediately after the flood event. Stations were subsequently reoccupied in October 2001 and April 2002. This sampling program provided a special opportunity to characterize the initial surficial flood deposit and the evolution of its associated OM over the course of 2 years. CuO oxidation, elemental, δ13C, Δ14C, and grain-size analyses were carried out to characterize the source, age, and spatial variability of sedimentary OM. Statistical analysis (PERMANOVA) was then applied to investigate temporal changes in different portions of the Po prodelta area. Isotopic and biomarker data suggest that the sedimentary OM in the flood deposit was initially dominated by aged (Δ14CDec-00 = −298.7 ± 56.3‰), lignin-poor OM (ΛDec-00 = 1.96 ± 0.33 mg/100 mg OC), adsorbed on the fine material (clayDec-00 = 72.1 ± 4.8%) delivered by the flood. In the 2 years following the flood, post-depositional processes significantly increased the content of lignin (ΛOct-01 = 2.19 ± 0.51 mg/100 mg OC; ΛApr-02 = 2.61 ± 0.63 mg/100 mg OC); and coarse material (silt and sand), while decreasing the contributions from aged OC (Δ14COct-01 = −255.7 ± 32.8‰; Δ14CApr-02 = −213.2 ± 30.4‰) and fine fraction (clayOct-01 = 54.8 ± 9.5%; clayApr-02 = 44.6 ± 13.3%). The major changes were observed in the northern and central portions of the prodelta.  相似文献   

5.
Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m−3) and RGM (8.1 ± 5.6 pg m−3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m−3, 3.2 ± 2.9 pg m−3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m−3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s−1 for GEM (spring, summer, fall and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s−1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 μg m−2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2–12 ng m−3) and RGM (50–150 pg m−3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).  相似文献   

6.
A means for estimating pressures in natural samples based on both the coupled substitution (Na+)[1+] (Ti + [VI]Si)[4+] = (M)[2+] (Al + Cr)[3+], and the classic pyroxene-stoichiometry majorite-substitution into garnet at high-pressure, is derived for garnets with majoritic chemistry. The technique is based on a compilation of experimental data for different bulk compositions. It is compositionally and thermally robust and can be used to estimate pressures experienced by natural materials during formation of majoritic garnet. In addition, it can be used either retrospectively, or in new experimental studies to establish the pressures of crystallization of reaction products, and determine if disequilibrium is recorded by the chemistries of majoritic garnets. Pressures are calculated based on majoritic chemistries in chondritic meteorites and diamond inclusions. Majoritic garnets associated with Mg perovskite in shocked L chondrites (n = 4) yield uniform pressures of 23.8 ± 0.2 GPa that are slightly higher than pressures recorded by majoritic garnet in shock-derived melt veins in L chondrites (22.4 ± 0.6 GPa; n = 5). Similar pressures are also exhibited by shock-derived majoritic garnets in H chondrites (22.2 ± 1.1 GPa; n = 3). Diamond inclusions with eclogitic and peridotitic majoritic garnet chemistries exhibit mean pressures of 10.7 ± 2.7 GPa (n = 30) and 8.3 ± 1.6 GPa (n = 15) respectively, consistent with a sub-lithospheric origin. However, pressures defined by majoritic diamond inclusions from Jagersfontein (22.3 ± 0.8 GPa and 16.9 ± 1 GPa), Monastery (15.7 ± 7 GPa) and Kankan (15.5 ± 0.2 GPa) show that these inclusions originated from the mantle transition zone. Thus, this new single-phase method for pressure estimation has unmatched potential to map the depth of formation of garnets with majoritic chemistries that occur as diamond inclusions in all parageneses except those that include Ca silicate perovskite. The derived pressures confirm the sub-lithospheric origin of eclogitic majoritic diamond inclusions, and thus provide a more comprehensive picture of the important role of storage of oceanic lithosphere in the transition zone.  相似文献   

7.
Sedimentological analyses of 289 years (AD 1718-2006) of varved sediment from Shadow Bay, southwest Alaska, were used to investigate hydroclimate variability during and prior to the instrumental period. Varve thicknesses relate most strongly to total annual discharge (r2 = 0.75, n = 43, p < 0.0001). Maximum annual grain size depends most strongly on maximum spring daily discharge (r2 = 0.63, n = 43, p < 0.0001) and maximum annual daily discharge (r2 = 0.61, n = 43, p < 0.0001), while varve thickness is poorly correlated with maximum annual grain size (r2 = 0.004, n = 287, p = 0.33). Relations between varve thickness and annual climate variables (temperature, precipitation, North Pacific (NP) and Pacific Decadal Oscillation (PDO) indices) are insignificant. On multidecadal timescales, however, regime shifts in varve thickness and total annual discharge coincide with shifts in NP and PDO indices. Periods with increased varve thickness and total annual discharge were associated with warm PDO phases and a strengthened Aleutian Low. The varve-inferred record of PDO suggests that any periodicity in the PDO varied over time, and that the early 19th century marked a transition to a more frequent or detectable shifts.  相似文献   

8.
Dissolved and particulate concentrations of metals (Fe, Al, Mn, Co, Ni, Cu, Zn, Cd, Tl, Pb) and As were monitored over a 5 year period in the Amous River downstream of its confluence with a creek severely affected by acid mine drainage (AMD) originating from a former Pb–Zn mine. Water pH ranged from 6.5 to 8.8. Metals were predominantly in dissolved form, except Fe and Pb, which were in particulate form. In the particulate phase, metals were generally associated with Al oxides, whereas As was linked to Fe oxides. Metal concentrations in the dissolved and/or particulate phase were generally higher during the wet season due to higher generation of AMD. Average dissolved (size < 0.22 μm) metal concentrations (μg/L) were 1 ± 4 (Fe), 69 ± 49 (Al), 140 ± 118 (Mn), 4 ± 3 Co, 6 ± 4 (Ni), 1.3 ± 0.8 (Cu), 126 ± 81 (Zn), 1.1 ± 0.7 (Cd), 0.9 ± 0.5 (Tl), 2 ± 3 (Pb). Dissolved As concentrations ranged from 5 to 134 μg/L (30 ± 23 μg/L). During the survey, the concentration of colloidal metals (5 kDa < size < 0.22 μm) was less than 25% of dissolved concentrations. Dissolved metal concentrations were generally higher than the maximum concentrations allowed in European surface waters for priority substances (Ni, Cd and Pb) and higher than the environmental quality standards for other compounds. Using Diffusion Gradient in Thin Film (DGT) probes, metals were shown to be in potentially bioavailable form. The concentrations in Leuciscus cephalus were below the maximum Pb and Cd concentrations allowed in fish muscle for human consumption by the European Water Directive. Amongst the elements studied, only As, Pb and Tl were shown to bioaccumulate in liver tissue (As, Pb) or otoliths (Tl). Bioaccumulation of metals or As was not detected in muscle.  相似文献   

9.
In this study, we link mineral inclusion data, trace element analyses, U-Pb age and Hf isotope composition obtained from distinct zircon domains of complex zircon to unravel the origin and multi-stage metamorphic evolution of amphibolites from the Sulu ultrahigh-pressure (UHP) terrane, eastern China. Zircon grains separated from amphibolites from the CCSD-MH drill hole (G12) and Niushan outcrop (G13) were subdivided into two main types based on cathodoluminescence (CL) and Laser Raman spectroscopy: big dusty zircons with inherited cores and UHP metamorphic rims and small clear zircons. Weakly zoned, grey-white luminescent inherited cores preserve mineral inclusions of Cpx + Pl + Ap ± Qtz indicative of a mafic igneous protolith. Dark grey luminescent overgrowth rims contain the coesite eclogite-facies mineral inclusion assemblage Coe + Grt + Omp + Phe + Ap, and formed at T = 732-839 °C and P = 3.0-4.0 GPa. In contrast, white luminescent small clear zircons preserve mineral inclusions formed during retrograde HP quartz eclogite to LP amphibolite-facies metamorphism (T = 612-698 °C and P = 0.70-1.05 GPa). Inherited zircons from both samples yield SHRIMP 206Pb/238U ages of 695-520 Ma with an upper intercept age of 800 ± 31 Ma. The UHP rims yield consistent Triassic ages around 236-225 and 239-225 Ma for G12 and G13 with weighted means of 229 ± 3 and 231 ± 3 Ma, respectively. Small clear zircons from both samples give 206Pb/238U ages around 219-210 Ma with a weighted mean of 214 ± 3 Ma, interpreted as the age of retrograde quartz eclogite-facies metamorphism. Matrix amphibole from both samples indicate Ar-Ar ages of 209 ± 0.7 and 207 ± 0.7 Ma, respectively, probably dating late amphibolite-facies retrogression. The data suggest subduction of Neoproterozoic mafic igneous rocks to UHP conditions in Middle Triassic (∼230 Ma) times and subsequent exhumation to an early HP (∼214 Ma) and a late LP stage (∼208 Ma) over a period of ∼16 and 6 Myr, respectively. Thus, early exhumation from a mantle depth of 120-100 km to about 60 km occurred at an average rate of 0.3 cm/y, while subsequent exhumation to a middle crustal level took place at approximately 0.54 cm/y. These exhumation rates are considerably slower than those obtained for UHP rocks in the Dora Maira and Kokchetav massifs (2-3 cm/y).Based on similar P-T estimates and trace element and Hf isotope compositions, Sulu amphibolites can be identified as retrograde UHP eclogites. The εHf(800) of +8 implies a significant input from the depleted mantle to the Sulu-Dabie terrane during the middle Neoproterozoic. Overgrown rims are characterized by a distinct trace element composition with low Lu/Hf and Th/U and significantly higher 176Hf/177Hf ratios than inherited cores, consistent with formation during/after garnet (re-)crystallization and fractionation of the Lu-Hf system during UHP metamorphism. The combined dataset suggests homogenization of the 176Hf/177Hf ratio within the metamorphic mineral assemblage and during protolith formation. Observed variations are explained by mixing of material from both domains during laser ablation, e.g., due to partial recrystallization of inherited cores.  相似文献   

10.
The composition and evolution of a metallic planetary core is determined by the behavior with pressure of the eutectic and the liquidus on the Fe-rich side of the Fe-FeS eutectic. New experiments at 6 GPa presented here, along with existing experimental data, inform a thermodynamic model for this liquidus from 1 bar to at least 10 GPa. Fe-FeS has a eutectic that becomes more Fe-rich but remains constant in T up to 6 GPa. The 1 bar, 3 GPa, and 6 GPa liquidi all cross at a pivot point at 1640 ± 5 K and FeS37 ± 0.5. This liquid/crystalline metal equilibrium is T-x-fixed and pressure independent through 6 GPa. Models of the 1 bar through 10 GPa experimental liquidi show that with increasing P there is an increase in the T separation between the liquidus and the crest of the metastable two-liquid solvus. The solvus crest decreases in T with increasing P. The model accurately reproduces all the experimental liquidi from 1 bar to 10 GPa, as well as reproducing the 0-6 GPa pivot point. The 14 GPa experimental liquidus ( [Chen et al., 2008a] and Chen et al., 2008b) deviates sharply from the lower pressure trends indicating that the 0-10 GPa model no longer applies to this 14 GPa data.  相似文献   

11.
The talcschists of the Boumnyebel area (southern Cameroon) form ≤ 30 m thick discontinuous layers within a Pan-African nappe unit (Yaoundé group), which includes, at the base, muscovite + biotite ± garnet micaschists associated with amphibolites and pyroxenites, and, at the top, muscovite + biotite + garnet + kyanite micaschists locally associated with marble and amphibolites. The metamorphic peak (∼650 °C/9.5 kbar; ca. 620 Ma) postdates nappe emplacement. Isograds are in normal position, micaschists passing downwards to migmatites in the northwestern part of the area studied. The rock types in the lower part of this nappe suggest active margin environments with detrital input from a nearby continental crust (arc or back-arc context).  相似文献   

12.
Acid mine drainage (AMD) from the Zn–Pb(–Ag–Bi–Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of ∼1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO3, 4330 mg/L Fe and 29,250 mg/L SO4. Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO4). The variations in the H and O isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI ∼ 0.25) and anglesite (SI ∼ 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI ∼ 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI ∼ −0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (∼90 wt.% water) of pH ∼1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3–7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb ≈ Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu, and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn; all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks.  相似文献   

13.
We performed density measurements on a synthetic equivalent of lunar Apollo 17 74,220 “orange glass”, containing 9.1 wt% TiO2, at superliquidus conditions in the pressure range 0.5-8.5 GPa and temperature range 1723-2223 K using the sink/float technique. In the lunar pressure range, two experiments containing pure forsterite (Fo100) spheres at 1.0 GPa and 1727 K, and at 1.3 GPa-1739 K, showed neutral buoyancies, indicating that the density of molten orange glass was equal to the density of Fo100 at these conditions (3.09 ± 0.02 g cm−3). A third tight sink/float bracket using Fo90 spheres corresponds to a melt density of 3.25 ± 0.02 g cm−3 at ∼2.8 GPa and ∼1838 K.Our data predict a density crossover for the molten orange glass composition with equilibrium orthopyroxene at ∼2.8 GPa, equivalent to a depth of ∼600 km in the lunar mantle, and a density of ∼3.25 g cm−3. This crossover depth is close to the orange glass multiple saturation point, representing its minimum formation depth, at the appropriate oxygen fugacity (2.8-2.9 GPa). A density crossover with equilibrium olivine is predicted to fall outside the lunar pressure range (>4.7 GPa), indicating that molten orange glass is always less dense than its equilibrium olivines in the Moon. Our data therefore suggest that that lunar liquids with orange glass composition are buoyant with respect to their source region at P < ∼2.8 GPa, enabling their initial rise to the surface without the need for additional external driving forces.Fitting the density data to a Birch-Murnaghan equation of state at 2173 K leads to an array of acceptable solutions ranging between 16.1 and 20.3 GPa for the isothermal bulk modulus K2173 and 3.6-8 for its pressure derivative K′, with best-fit values K2173 = 18.8 GPa and K′ = 4.4 when assuming a model 1 bar density value of 2.86 g cm−3. When assuming a slightly lower 1 bar density value of 2.84 g cm−3 we find a range for K2173 of 14.4-18.0 and K′ 3.7-8.7, with best-fit values of 17.2 GPa and 4.5, respectively.  相似文献   

14.
The 400 km-long Karakax left-lateral strike-slip fault is the westernmost segment of the Altyn Tagh fault. It separates northwestern Tibet to the south from the Tarim basin to the north. The western section of the Karakax fault exhibits clear co-seismic surface ruptures of past large earthquakes. Geomorphic offset measurements from the field and high-resolution Ikonos images along 1.5 km across the Sanshiliyingfang fan and along 55 km of the fault, range from 3 to 28 m, with distinct clusters at 6 ± 2(3), 14 ± 2, 19 ± 2 and 24 ± 3 m. The cluster of the smallest offsets around 6 m (full range from 3 to 10 m) distributed over a minimum length of 55 km, is attributed to the last largest surface rupturing event that testifies of the occurrence of a magnitude Mw 7.4-7.6 earthquake along the Karakax fault. We interpret the other offset clusters as the possible repetition of similarly sized events thus favoring a characteristic slip model for the Karakax fault. In a 3 m-deep trench dug across the active trace of the fault we can identify the main rupture strands of the last and penultimate events. The penultimate event horizon, a silty-sand layer, has been radiocarbon dated at 975-1020 AD (AMS 14C age). It is proposed that large Mw 7.4-7.6 events with co-seismic slip of about 6 m rupture the Karakax fault with a return time of about 900 years implying an average slip-rate of about 6-7 mm/years during the late Holocene. These results suggest that the Karakax fault is the largest left-lateral strike-slip fault at the rim of northwestern Tibet accommodating eastward movement of Tibet due to the India-Eurasia collision.  相似文献   

15.
The Sierra los Cuchumatanes (3837 m), Guatemala, supported a plateau ice cap and valley glaciers around Montaña San Juan (3784 m) that totaled ∼ 43 km2 in area during the last local glacial maximum. Former ice limits are defined by sharp-crested lateral and terminal moraines that extend to elevations of ∼ 3450 m along the ice cap margin, and to ca. 3000-3300 m for the valley glaciers. Equilibrium-line altitudes (ELAs) estimated using the area-altitude balance ratio method for the maximum late Quaternary glaciation reached as low as 3470 m for the valley glaciers and 3670 m for the Mayan Ice Cap. Relative to the modern altitude of the 0°C isotherm of ∼ 4840 m, we determined ELA depressions of 1110-1436 m. If interpreted in terms of a depression of the freezing level during maximal glaciation along the modern lapse rate of − 5.3°C km− 1, this ΔELA indicates tropical highland cooling of ∼ 5.9 to 7.6 ± 1.2°C. Our data support greater glacial highland cooling than at sea level, implying a high tropical sensitivity to global climate changes. The large magnitude of ELA depression in Guatemala may have been partially forced by enhanced wetness associated with southward excursions of the boreal winter polar air mass.  相似文献   

16.
Within 5 million years after formation of calcium aluminium rich inclusions (CAI), high temperature anhydrous phases were transformed to hydrous phyllosilicates, mostly serpentines, which dominate the matrices of the most primitive carbonaceous chondrites. CMs are the largest group of meteorites to provide samples of this material. To understand the nature of the availability, and role of H2O in the early solar system - as well as the settings of aqueous alteration - defining CM petrogenesis is critical. By Position Sensitive Detector X-ray Diffraction (PSD-XRD), we determine the modal abundance of crystalline phases present in volumes >1% for a suite of CMs - extending Part 1 of this work that dealt only with CM2 falls (Howard et al., 2009) to now include CM2 and CM1 finds. CM2 samples contain 13-31% Fe,Mg silicates (olivine + pyroxene) and from 67% to 82% total phyllosilicate (mean 75% ± 1.3 2σ). CM1 samples contain 6-10% olivine + pyroxene and 86-88% total phyllosilicate. Magnetite (0.6-5.2%), sulphide (0.6-3.9%), calcite (0-1.9%) and gypsum (0-0.8%) are minor phases across all samples. Since phyllosilicate forms from hydration of anhydrous Fe,Mg silicates (olivine + pyroxene), the ratio of total phyllosilicate to total anhydrous Fe,Mg silicate defines the degree of hydration and the following sequence results (in order of increasing hydration): QUE 97990 < Y 791198 < Murchison < Murray < Mighei < ALHA 81002 < Nogoya ? Cold Bokkeveld ? Essebi < QUE 93005 < ALH 83100 < MET 01070 < SCO 06043. High activities of Al (mostly from reactive mesostasis) and Si help to explain the composition and structure of CM serpentines that are distinct from terrestrial standards. Our data allows inference as to CM mineralogy at the point of accretion and challenges the conceptual validity of progressive alteration sequences. Modal mineralogy also provides new insights into CM petrogenesis and hints at a component of aqueous alteration occurring in the nebula, in addition to on the CM parent body(ies).  相似文献   

17.
In the eastern Himalayan syntaxis, the southern Lhasa terrane is dominated by middle- to high-grade metamorphic rocks (Nyingchi Complex), which are intruded by felsic melts. U-Pb zircon dating and zircon Hf isotopic composition of these metamorphic and magmatic rocks provide important constraints on the tectono-thermal evolution of the Lhasa terrane during convergent process between Indian and Asian continents. U-Pb zircon data for an orthogneiss intruding the Nyingchi Complex yield a protolith magma crystallization age of 83.4 ± 1.2 Ma, with metamorphic ages of 65-46 Ma. This orthogneiss is characterized by positive εHf (t) values of + 8.3 and young Hf model ages of ~ 0.6 Ga, indicating a derivation primarily from a depleted-mantle or juvenile crustal source. Zircons from a quartz diorite yield a magma crystallization age of 63.1 ± 0.6 Ma, with εHf (t) values of − 8.2 to − 2.7, suggesting that this magma was sourced from partial melting of older crustal materials. Zircon cores from a foliated biotite granite show ages ranging from 347 to 2690 Ma, with age peaks at 347-403 Ma, 461-648 Ma and 1013-1183 Ma; their zircon εHf (t) values range from − 30.6 to + 6.9. Both the U-Pb ages and Hf isotopic composition of the zircon cores are similar to those of detrital zircons from the Nyingchi Complex paragneiss, implying that the granite was derived from anatexis of the Nyingchi Complex metasediments. The zircon rims from the granite indicate crustal anatexis at 64.4 ± 0.7 Ma and subsequent metamorphism at 55.1 ± 1.3 and 41.4 ± 2.3 Ma. Our results suggest that the late Cretaceous magmatism in the southern Lhasa terrane resulted from Neo-Tethys oceanic slab subduction and we infer that Paleocene crustal anatexis and metamorphism were related to the thermal perturbation caused by rollback of the northward subducted Neo-Tethyan oceanic slab.  相似文献   

18.
In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged pKa values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10−4, (9.0 ± 3.0) × 10−5, (4.6 ± 1.8) × 10−5, and (6.1 ± 2.3) × 10−5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption behavior that we observed for A. angustum demonstrate that genetic differences do exist between the cell wall functional group chemistries of some bacterial species, and that significant exceptions to the typical bacterial adsorption behavior do exist.  相似文献   

19.
Twenty sites were drilled in the late Cretaceous Shexing Formation for palaeomagnetic studies in the Lhasa terrane near the locality of Maxiang (29.9°N/90.7°E). The stepwise thermal demagnetizations successfully isolated high unblocking temperature characteristic directions. The tilt-corrected mean direction is D/I = 350.8°/32.1° with α95 = 8.1° and N = 20 sites, corresponding to a paleopole at 75.0°N, 306.7°E with A95 = 6.8°. Positive fold tests indicate a primary origin for the characteristic remanence. Based on previous Cretaceous data mainly from the Takena Formation and Paleocene data from the Linzizong volcanic rocks near the city of Lhasa, the latitude of the southern margin of Asia is located at about 15°N, and yields a stable position of the Lhasa terrane during Cretaceous and Paleocene. Compared with expected paleomagnetic directions from the stable India and Eurasia blocks, the collision palaeolatitude further implies the total latitudinal convergence was accommodated by 1700 ± 800 km (16.2 ± 7.6°) between southern Tibet and stable Eurasia and 1500 ± 830 km (14.4 ± 7.9°) between southern Tibet and stable India since the collision of India and Eurasia. A collision age between c. 54 and 47 Ma was determined using the results for the southern margin of Eurasia according to our new data and the extent of ‘Greater India’.  相似文献   

20.
Very limited research has been conducted on selenium (Se) in Lebanese soils and forage crops but no work has been done on Se in water and locally produced vegetables and grains. This research was conducted in order to quantify Se levels and its availability in agricultural soils, vegetables and grains in Lebanon. Sixty-six (66) soil samples were collected from 33 selected sites in Lebanon: the Bekaa Valley, coastal and mountainous regions. Thirteen (13) different plant types (86 samples) were sampled from the same locations. Also, 13 spring water and 10 bottled water samples were collected. Soil samples were analyzed for their physical and chemical properties. Selenium was extracted from soils with: deionized–distilled water (Soluble-Se), KH2PO4-0.1 M (MKP-Se) and concentrated (HNO3 + HCl) mixture (acid-Se). Plant Se was extracted by acid digestion on a hotplate. Selenium concentrations were measured by the inductively coupled plasma-mass spectrophotometer (ICP-MS). The values of Soluble-Se, MKP-Se and acid-Se ranged between 47 and 142, 147 and 400, and 1749 and 4713 μg/kg, respectively, with average values of 95, 306, and 3118 μg/kg and at a ratio of 1:3:30. Thus, Se extracted with deionized–distilled water is a good indicator for Se availability in the studied soils. The average Se concentration in plants was in the following order: radish > lettuce > cucumber > cabbage > parsley > alfalfa > onion (leaves) > broccoli > tomato > mint > chickpeas > wheat > onion (bulbs). The Se levels in water samples were in the safe range (less than 50 μg/L) and ranged between 2.14 and 17.6 μg/L. The levels of Se in the three soil extractants were positively correlated with each other and with organic matter content, salinity and phosphorus (P). Selenium levels in plant samples were positively correlated at a 0.01 significance level with clay and P content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号