首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A revised structural interpretation for the Victory to Kambalda area of the world class St Ives Goldfield in the Archean Yilgarn Craton has mapped out the distribution of WNW-trending faults within this area of the field. These previously cryptic WNW-trending structures had been identified in gravity data, and also by isopach thickness variations. The WNW-trending faults acted as transfers syn-gold mineralization, although only discrete segments of these faults were active during the main stage of gold mineralization. Where mineralized, the faults transferred strain from a complex combination of block-on-block movement associated with thrusting and strike-slip movement on NW- and N-trending faults. Along some segments N-trending mineralized faults terminate against the WNW-trending faults. Many of the WNW-trending faults correlate with major strike changes on regional and camp-scale faults and they are domain boundaries for the critical N-trending fault segments that host high-grade gold within contractional jogs. The WNW-trending faults also show evidence for an older deformation history prior to main-stage gold, which may extend back to early basin development associated with ultramafic and mafic volcanism. They are inferred to have been a series of early WNW-trending normal faults and breached relay ramps associated with oblique rifting along an older NNW-trending basement boundary.  相似文献   

2.
Salt tectonics in pull-apart basins with application to the Dead Sea Basin   总被引:1,自引:0,他引:1  
The Dead Sea Basin displays a broad range of salt-related structures that developed in a sinistral strike-slip tectonic environment: en échelon salt ridges, large salt diapirs, transverse oblique normal faults, salt walls and rollovers. Laboratory experiments are used to investigate the mechanics of salt tectonics in pull-apart systems. The results show that in an elongated pull-apart basin the basin fill, although decoupled from the underlying basement by a salt layer, remains frictionally coupled to the boundary. The basin fill, therefore, undergoes a strike-slip shear couple that simultaneously generates en échelon fold trains and oblique normal faults, trending mutually perpendicular. According to the orientation of basin boundaries, sedimentary cover deformation can be dominantly contractional or extensional, at the extremities of pull-apart basins forming either folds and thrusts or normal faults, respectively. These guidelines, applied to the analysis of the Dead Sea Basin, show that the various salt-related structures form a coherent set in the frame of a sinistral strike-slip shearing deformation of the sedimentary basin fill.  相似文献   

3.
ABSTRACT In Central Asia, thrusts and shear zones resulting from Palaeozoic accretional events were reworked by E–W-trending ductile strike-slip faults during late Palaeozoic–early Mesozoic time. In the Tianshan range, microstructures and quartz C-axis fabrics show a main dextral shearing associated with sinistral localized shear zones. The relationship between these conjugate structures indicates a NNW–SSE-trending bulk shortening. In the Chinese Altay mountains, the existence of δ-type microstructures in an important sinistral mylonitic zone infers high rates of deformation. This shear zone is bordered by a late dextral ductile fault synchronous with a granite emplacement. Field evidence and datings from the literature provide chronological constraints. In the late Carboniferous, the sinistral mylonitic deformation took place in the Erqishi–Irtysh shear zone in the northeastern part of Xinjiang and in Kazakhstan. During the Early Permian, a regional dextral event occurred in the Tianshan range and under the whole of northern Xinjiang.  相似文献   

4.
Transpressive duplex and flower structure: Dent Fault System, NW England   总被引:1,自引:0,他引:1  
Revised mapping along the Dent Fault (northwest England) has improved the resolution of folds and faults formed during Variscan (late Carboniferous) sinistral transpression. A NNE-trending east-down monocline, comprising the Fell End Syncline and Taythes Anticline, was forced in Carboniferous cover above a reactivated precursor to the Dent Fault within the Lower Palaeozoic basement. The Taythes Anticline is periclinal due to interference with earlier Acadian folds. The steep limb of the monocline was eventually cut by the west-dipping Dent Fault. The hangingwall of the Dent Fault was dissected by sub-vertical or east dipping faults, together forming a positive flower structure in cross-section and a contractional duplex in plan view. The footwall to the Dent Fault preserves evidence of mostly dip-slip displacements, whereas strike-slip was preferentially partitioned into the hangingwall faults. This pattern of displacement partitioning may be typical of transpressive structures in general. The faults of the Taythes duplex formed in a restraining overlap zone between the Dent Fault and the Rawthey Fault to the west. The orientations of the duplex faults were a response to kinematic boundary conditions rather than to the regional stress field directly. Kinematic constraints provided by the Dent and neighbouring Variscan faults yield a NNW–SSE regional shortening direction in this part of the Variscan foreland.  相似文献   

5.
中国阿尔泰造山带南缘额尔齐斯断裂带的构造变形及意义   总被引:6,自引:4,他引:2  
刘飞  王镇远  林伟  陈科  姜琳  王清晨 《岩石学报》2013,29(5):1811-1824
额尔齐斯断裂是中亚造山带中的一条重要深大断裂,对于额尔齐斯断裂运动性质一直有着走滑断层、逆冲断层和压扭性断层等不同看法.本文在中国阿尔泰造山带南缘开展了详细的构造地质学工作,研究结果表明,额尔齐斯断裂及其次级断裂组成额尔齐斯断裂带.额尔齐斯断裂带在中国境内是一条宽约20 ~ 40km,长约400km,经受不同程度构造作用的强应变带,剪切作用影响范围遍布整个中国阿尔泰造山带南缘.额尔齐斯断裂带经历了左行走滑和右行走滑两个阶段.结合前人有关韧性剪切带成因型金矿、同构造岩体侵位与变形关系及对变质岩石40Ar/39Ar年代学研究,本文认为额尔齐斯断裂带的左行走滑构造形成于早二叠世(283~275Ma).早二叠世之后,额尔齐斯断裂带叠加了右行走滑事件,其活动时限可能为晚二叠世(260 ~ 245 Ma),其规模远远小于前期的左行走滑构造.额尔齐斯断裂带走滑活动性质的确定,为二叠纪北疆及整个中亚造山带造山后调整过程中不同的构造方式提供了佐证.  相似文献   

6.
惠民凹陷南坡北北西向走滑断裂带的发育特征及成因分析   总被引:1,自引:1,他引:0  
通过对惠民南坡前中生代断裂的平面分布和三维地震剖面特征的分析,识别出了一组在平面上相互平行,在剖面上具有负花状构造的北北西向走滑断裂带。通过对负花状构造的形态及其卷入地层特征的分析,认为该组断裂带经历过两期不同性质的走滑运动,在中生代经历了较强的左行张性走滑,在新生代经历了较弱的右行压性走滑。其演化过程与鲁西地块上北北西向走滑断层的演化过程一致,均属于郯庐断裂区域性走滑作用所形成的帚状构造体系的一部分,郯庐断裂在中生代的左行走滑和新生代的右行走滑是控制其发展演化的主要因素。  相似文献   

7.
The structure of the Jiuling Massif has been investigated in order to delineate the polyorogenic deformation and discuss its geodynamic evolution and orogenic mechanisms. Detailed structural analysis indicates that the D1 event is characterized by top-to-the NNW ductile shearing with pervasive foliation, and mineral and stretching lineation developed in the entire region. Compared with the D1 deformation, D2 structures are localized in ductile shear zones with subvertical foliation and subhorizontal E–W trending lineation, indicating a dextral ductile shearing. The D3 event, marked by folds and thrusts mainly in a brittle domain, modified the D1 structures by asymmetrical folds. The dominant D4 structures are gravitational folds and normal faults, corresponding to a later extension. Our new geochronological data suggest that the D1 event occurred between 465 and 380 Ma with D2 dextral shearing at the end of this Early Paleozoic orogen, and the D3 event has been constrained at 245–215 Ma. The final uplift of the Jiuling Massif by the D4 event can be correlated with the Late Mesozoic extension across the eastern South China block. Along with previous studies in the South China block, the structural pattern of the Jiuling Massif elucidates the influence of the Early Paleozoic and Early Mesozoic intracontinental belts triggered by repeated reactivation of the Jiangshan–Shaoxing Fault. Combined with deformation to the south, the Early Paleozoic belt shows a positive flower pattern, with opposing kinematics, rooted in the Jiangshan–Shaoxing Fault. During the Early Mesozoic, a general intracontinental belt was developed with uniform kinematics in both the Jiuling Massif and the Xuefengshan Belt, possibly resulted from the far-field effect of the Triassic NW-directed Paleo-Pacific subduction.  相似文献   

8.
The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo–Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo–Junction region to assess its implications for gold metallogenesis. The results show that the region’s stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo–Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.  相似文献   

9.
ABSTRACT Many structures produced under one single deformation regime, namely extensional, contractional or strike-slip, exhibit remarkable geometrical analogies when analysed at different scales. By contrast, field examples that illustrate the scale effects on structures resulting from superimposed deformations, which were produced under different tectonic regimes, are rare. Yet the change from contraction to extension is known to occur often in the most thickened portions of the continental crust. The Apennine–Maghrebide fold-and-thrust belt of Sicily shows many examples of post-orogenic extensional deformations. Composite structures, resulting from late normal faults that offset folds and thrusts, are observed at four different scales, from regional to mesoscopic, in the south-western portion of Sicily and in the adjacent Isle of Favignana. The recognized analogies in the geometry of these composite structures may provide a key for the interpretation of the features of regional structures, whose deep geometry is often poorly constrained. Moreover, comparison of normalized displacements accommodated by contractional and extensional faults of different scales indicates that self-similarity is not unique to structures produced under single tectonic regimes.  相似文献   

10.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

11.
Al Jabal Al Akhdar is a NE/SW- to ENE/WSW-trending mobile part in Northern Cyrenaica province and is considered a large sedimentary belt in northeast Libya. Ras Al Hilal-Al Athrun area is situated in the northern part of this belt and is covered by Upper Cretaceous–Tertiary sedimentary successions with small outcrops of Quaternary deposits. Unmappable and very restricted thin layers of Palaeocene rocks are also encountered, but still under debate whether they are formed in situ or represent allochthonous remnants of Palaeocene age. The Upper Cretaceous rocks form low-lying to unmappable exposures and occupy the core of a major WSW-plunging anticline. To the west, south, and southeast, they are flanked by high-relief Eocene, Oligocene, and Lower Miocene rocks. Detailed structural analyses indicated structural inversion during Late Cretaceous–Miocene times in response to a right lateral compressional shear. The structural pattern is themed by the development of an E–W major shear zone that confines inside a system of wrench tectonics proceeded elsewhere by transpression. The deformation within this system revealed three phases of consistent ductile and brittle structures (D1, D2, and D3) conformable with three main tectonic stages during Late Cretaceous, Eocene, and Oligocene–Early Miocene times. Quaternary deposits, however, showed at a local scale some of brittle structures accommodated with such deformation and thus reflect the continuity of wrenching post-the Miocene. D1 deformation is manifested, in Late Cretaceous, via pure wrenching to convergent wrenching and formation of common E- to ENE-plunging folds. These folds are minor, tight, overturned, upright, and recumbent. They are accompanied with WNW–ESE to E–W dextral and N–S sinistral strike-slip faults, reverse to thrust faults and pop-up or flower structures. D2 deformation initiated at the end of Lutetian (Middle Eocene) by wrenching and elsewhere transpression then enhanced by the development of minor ENE–WSW to E–W asymmetric, close, and, rarely, recumbent folds as well as rejuvenation of the Late Cretaceous strike-slip faults and formation of minor NNW–SSE normal faults. At the end of Eocene, D2 led to localization of the movement within E–W major shear zone, formation of the early stage of the WSW-plunging Ras Al Hilal major anticline, preservation of the contemporaneity (at a major scale) between the synthetic WNW–ESE to E–W and ENE–WSW strike-slip faults and antithetic N–S strike-slip faults, and continuity of the NW–SE normal faults. D3 deformation is continued, during the Oligocene-Early Miocene, with the appearance of a spectacular feature of the major anticline and reactivation along the E–W shear zone and the preexisting faults. Estimating stress directions assumed an acted principal horizontal stress from the NNW (N33°W) direction.  相似文献   

12.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

13.
This paper presents the first paleostress results obtained from displacement and fracture systems within the Lower Eocene sediments at Jabal Hafit, Abu Dhabi Emirate, UAE. Detailed investigation of Paleogene structures at Jabal Hafit reveal the existence of both extensional structures (normal faults) and compressional structures (strike-slip and reverse faults). Structural analysis and paleostress reconstructions show that the Paleogene kinematic history is characterized by the succession of four paleostress stages. Orientation of principal stresses was found from fault-slip data using an improved right-dihedra method, followed by rotational optimisation (TENSOR program).The paleostress results confirm four transtensional tectonic stages (T1–T4) which affected the study area. The first tectonic stage (T1) is characterized by SHmax NW–SE σ2-orientation. This stage produced NW–SE striking joints (tension veins) and E–W to ENE–WSW striking dextral strike-slip faults. The proposed age of this stage is Early Eocene. The second stage (T2) had SHmax N–S σ2-orientation. N–S striking joints and NNE–SSW striking sinistral strike-slip faults, E–W striking reverse faults and N–S striking normal faults were created during this stage. The T2 stage is interpreted to be post-Early Eocene in age. The third stage (T3) is characterized by SHmax E–W σ2-orientation. This stage reactivated the E–W reverse faults as sinistral strike-slip faults and created E–W striking joints and NE–SW reverse faults. The proposed age for T3 is post-Middle Eocene. During the T3 (SHmax E–W σ2-orientation) stage the NNW-plunging Hafit anticline was formed. The last tectonic stage that affected the study area (T4) is characterized by SHmax NE–SW σ2-orientation. During this stage, the ENE–WSW faults were reactivated as sinistral strike-slip and reverse faults. NE–SW oriented joints were also created during the T4 (SHmax NE–SW σ2-orientation) stage. The interpreted age of this stage is post-Middle Miocene time but younger than T3 (SHmax E–W σ2-orientation) stage.  相似文献   

14.
The Leonora Domain contains seven significant gold deposits that display markedly different structural styles. Deposits such as Gwalia, Tower Hill and Harbour Lights are characterised by strongly folded and boudinaged veins. In contrast, the Tarmoola/King of the Hills deposit comprises gold lodes that have not experienced ductile conditions. The complex geometry of many of the deposits here has led to multiple interpretations for the timing and nature of gold deposition. The Leonora Domain, located along the margin of the Raeside Batholith 250 km north of Kalgoorlie, is dominated by a strong extensional fabric that wraps around the edge of the batholith and formed during D1 extension and exhumation of the granite body. In all localities the extensional fabric (S1b) is overprinted by upright folds and shears produced by the onset of east–west compression (D2 event) and sinistral transpression (D3 event). Subsequent east-northeast?west-southwest D4 shortening produced abundant dextral shears that overprinted and reactivated the D3 structures. Late orogenic collapse during the D5 event produced abundant steep planar normal faults.

New structural observations presented here provide evidence that deposits such as Gwalia, Tower Hill and Harbour Lights formed at a very early stage of D1 extension, prior to the main exhumation event (D1b). In contrast, gold lodes at Tarmoola/King of the Hills are related to sinistral-reverse shears that developed in the deformed carapace of a large granite body during strong east–west compression (D3 event). The lodes have formed as a result of strong competency contrast between the granite and the surrounding ultramafic rocks and are more typical of gold deposits elsewhere in the Eastern Goldfields. The spatial distribution of the major early deposits in the Leonora Domain indicates that the first-order control on gold distribution is the major shear along the contact of the Raeside Batholith. The regular spacing of the deposits around the Raeside Batholith likely reflects the rheology and thickness of the extending sequence. Gwalia, Tower Hill and Harbour Lights deposits are located at an apparent bulge in the eastern side of the Raeside Batholith, which may have originally been the highest part of the batholith and, with the onset of extension, may have focused structures and rising hydrothermal fluids into this area.  相似文献   

15.
The Hodgkinson Province is a tract of␣multiply deformed Silurian-Devonian rocks in north␣Queensland, Australia. Gold-bearing quartz veins from the West Normanby Goldfield in the northern Hodgkinson Province were emplaced during the Permian D4 event, broadly coeval with regional granite emplacement. Taylors Fault, a major structure that formed during D2, hosts the veins which infill dilatational jogs opened during sinistral-normal reactivation of the fault in D4. Veins contain graphitic laminations that formed when fault planes segmented wallrocks adjacent to the veins, producing tabular clasts that were tectonically sliced into the reefs. Laminations are the result of progressive shear strain, associated with continued movement on the faults, which caused strain-enhanced dissolution of silicate minerals and residual graphite enrichment in the clasts. This process produced graphite-coated shear planes that delimit zones of grain size reduction in the veins. Laminations commonly contain stylolites, which nucleated on pronounced sinuosities of the shear planes due to progressive shortening during D4. Gold particles have preferentially nucleated in zones of relatively coarser-grained quartz adjacent to the shear planes, where shortening strain caused microfracturing and allowed fluid access. Gold may have been introduced with the quartz, but was redistributed within the reefs and localized along the laminations by the effects of synchronous, progressive deformation. Regionally, gold deposits show close spatial relationships with granite plutons of the Permian Whypalla Supersuite. Relationships in the West Normanby Gold Field support a regional model of reef emplacement and gold mineralization during the Permian D4 event. Received: 24 August 1997 / Accepted: 14 October 1997  相似文献   

16.
The Taparko gold deposit, located in the eastern branch of the Proterozoic Birimian Bouroum-Yalogo greenstone belt (Burkina Faso) consists of a network of quartz veins developed in a N 170° trending shear zone (250 m wide, 4 km long) superimposed on the regional Birimian structural pattern. The quartz vein network is composed of: (a) a dominant array of quartz veins (type 1), parallel to the shear zone and comprising strongly deformed dark quartz exhibiting foliation, layering, ribbon, tension gashes, etc.; (b) oblique and subparallel related veins (type 2) of gray to white weakly deformed quartz crosscutting the dominant quartz veins resulting in breccia structures; and (c) shallow dipping veins (type 3), cross-cutting veins types 1 and 2 and filled by undeformed white buck structure quartz. Cross-cutting relationships and different quartz types in different veins and within individual veins imply a concomitant filling of the veins during the progressive deformation. Initial sinistral transcurrent shearing evolved with time to sinistral reverse shearing. Metallic minerals occur only in type 1 and 2 veins and were deposited in two stages, with native gold being related to second stage sulfides. Gold (and chalcopyrite) precipitated preferentially upon the surfaces of fractured pyrite grains in low-pressure sites (pressure shadow zones) around and/or within the sulfide grains (along subsequently annealed fractures). The formation of the South Taparko deposit can be divided into a succession of events: (a) during the first event, N 170°-directed sinistral transcurrent shearing resulted in a N 20° mylonitic foliation and fractured rock which allowed H2O-, CO2- and SiO2-rich fluids to circulate and deposit quartz with buck texture; (b) during the second event, type 1 quartz was strongly deformed and type 2 veins formed with sigmoidal shapes as viewed on a horizontal plane; and (c) during the third event, the sinistral transcurrent shearing evolved to sinistral reverse shearing and the deformation style evolved correspondingly from ductile to brittle-ductile. During the last phase of deformation gold nucleated and deposited in low-pressure zones. Received: 9 July 1997 / Accepted: 23 March 1998  相似文献   

17.
Re-examination of the outcrop of conjugate of strike-slip faults mapped by Roday et al. (1989) near forest rest house at Hirapur reveals that the main dextral strike-slip fault that strikes N35°E and is a manifestation of the earliest NE-SW trending subhorizontal σ1 that produced extensional reef system in the Bundelkhand massif. Although the change in the stress system though 90° rotation of the principal compressive stress σ1 and σ3 (with σ2 maintaining near vertically) is correct, another point of interest is that the σ1 for the system of faults bisects the obtuse angle between the two sets and not an acute one as required by the brittle failure criterion. The sinistral strike-slip faults were probably formed by rejuvenation of the initial dextral strike-slip faults that were generated when the maximum principal compressive stress was oriented NS. The reversal of fault displacement is seen on all scales in the Bundelkhand massif. The dextral strike-slip fault related to the late stress system was preferentially produced along pre-existing tensile fractures that were generated under NE-SW directed subhorizontal σ1. Some of these fractures were converted into sinistral strike-slip faults under NS directed maximum principal compression acting subhorizontally.  相似文献   

18.
In Kameng Valley of Arunachal Pradesh, the crystalline rocks of Se La Group of Higher Himalaya are thrust over the Lesser Himalayan rocks of Dirang Formation, Bomdila Group along the Main Central Thrust and exhibit well preserved structures on macro- to microscopic scales. Detailed analysis of structures reveals that the rocks of the area have suffered four phases of deformation D1, D2, D3 and D4. These structures have been grouped into (i) early structures (ii) structures related to progressive ductile thrusting and (iii) late structures. The early structures which developed before thrusting formed during D1 and D2 phases of deformation, synchronous to F1 and F2 phases of folding respectively. The structures related to progressive ductile shearing developed during D3 phase of deformation, when the emplacement of the crystalline rocks took place over the rocks of Dirang Formation along the Main Central Thrust. Different asymmetric structures/kinematic indicators developed during this ductile/brittle-ductile regime suggest top-to-SSW sense of movement of the crystalline rocks of the area. D4 is attributed to brittle deformation. Based on satellite data two new thrusts, i.e. Tawang and Se La thrusts have been identified parallel to Main Central Thrust, which are suggestive of imbricate thrusting. Strain analysis from the quartz grains of the gneissic rocks reveals constriction type of strain ellipsoid where k value is higher near the MCT, gradually decreases towards the north. Further, the dynamic analysis carried out on the mesoscopic ductile and brittle-ductile shear zones suggest a NNE-SSW horizontal compression corresponding to the direction of northward movement of Indian Plate.  相似文献   

19.
Locally recorded data for eighteen aftershocks of a magnitude(mb) 4.6 earthquake occurring near Ukhimath in the Garhwal Himalaya were analysed. A master event technique was adopted to locate seventeen individual aftershock hypocentres relative to the hypocentre of the eighteenth aftershock chosen as the master event. The aftershock epicentres define an approximately 30 km2 rupture zone commensurate with the magnitude of the earthquake. The distribution of epicentres within this zone and the limited amount of first motion data support the view that a group of parallel, sub-vertical, sinistral strike-slip faults oriented N46°, transverse to the regional NW-SE trend of the Garhwal Himalaya, was involved in this seismic episode. Since the estimated focal depth range for aftershocks of this sequence is 3–14 km, we infer that this transverse fault zone extends through the upper crustal layer to a depth of 14 km at least.  相似文献   

20.
《Geodinamica Acta》2000,13(2-3):67-85
The structure of western Provence (SE France) is the result of successive deformations connected to the building of the Pyrenees and the Alps. It is a seismically active region still undergoing deformation. The aim of this study is to characterize the recent deformation in western Provence and to integrate the cumulated displacements in a coherent deformation model. In order to do this, we identified the recent structures that concentrate the deformation. We used the Miocene as a sedimentary marker to estimate the discontinuous deformation over the last 20 Ma and geomorphic surfaces to evaluate the amount of the post-Miocene deformation. Miocene terrains are deformed along south-vergent thrusts such as Le Luberon, Les Costes, La Trévaresse or Les Alpilles, and along sinistral strike-slip faults such as the Durance and Nîmes faults. North-vergent Pyrenean thrusts such as L’Étoile-Sainte Baume, Sainte Victoire or the Eguilles thrusts were not reactivated during the Alpine phase. Field evidence shows that in the Luberon, the main folding phase occurred during, or immediately after the Burdigalian (20.5–16 Ma). The shortening measured on a regional N–S cross-section is of a few kilometres, implying a deformation of 0.1–0.2 mm·year–1 since the beginning of the Miocene. Geomorphic surfaces have been reported on cross-sections of the E–W thrusts. The intensity of the deformation decreases southward and through time during the Miocene. Pliocene surfaces are not deformed near the active structures, except at the front of the Digne thrust. Furthermore, Quaternary geomorphic markers such as alluvial fans are not affected by the Durance strike-slip fault. Our results show that from Miocene to the Present, Provence was not intensively deformed (0.1–0.2 mm·year–1), and occurred in a short period of time during the Miocene. It is coherent with the southward emplacement of the Alpine Digne thrust being the cause of this deformation. Since the end of the Miocene, there have been no major displacements on any of the active structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号