首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo–Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo–Junction region to assess its implications for gold metallogenesis. The results show that the region’s stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo–Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.  相似文献   

2.
SHRIMP U–Pb zircon analysis indicates that detrital zircons from extensive quartzite units in the Southern Cross Granite‐Greenstone Terrane of the central Yilgarn Craton have ages ranging from ca 4350 Ma to ca 3130 Ma. Regional mapping studies indicate that the quartzites lie at the stratigraphic base of the exposed succession. The detrital zircon age profiles of the Southern Cross Granite‐Greenstone Terrane quartzites are remarkably similar to those of quartzites in the Narryer and South West Terranes, in the northwest and southwest of the Yilgarn Craton respectively, and are significantly older than any igneous rocks that have been dated anywhere in the Yilgarn Craton other than the Narryer Terrane. Similar detrital‐zircon‐bearing quartzites have not been identified in the Murchison Granite‐Greenstone Terrane. These age profiles suggest that the quartzites have a common depositional history. Granites in the central Yilgarn Craton are mainly younger than ca 2750 Ma and contain rare xenocrystic zircons older than 3100 Ma. If the central and western Yilgarn quartzites were all deposited at approximately the same time, the lack of preserved continental crust in the Southern Cross and Murchison Granite‐Greenstone Terranes, and the South West Terrane, that is older than 3100 Ma, suggests that pre‐3100 Ma Narryer‐like continental crust may have been rifted or extensively reworked during deposition of greenstone successions between ca 3000 and ca 2700 Ma. If not, then a ca 4350 Ma detrital zircon in the Southern Cross Granite‐Greenstone Terrane indicates more widespread, very old, continental crust than has previously been identified.  相似文献   

3.
SHRIMP U–Pb analyses are reported for a detrital zircon population from a sample of sillimanite-bearing quartzite from the Narryer sedimentary succession in the Narryer Terrane of the northwestern Yilgarn Craton. The detrital zircons define two distinctive age groups, an older group from 4000 Ga to 4280 Ma and a younger group from 3750 to 3250 Ma. The abundance of older group zircons of about 12% far exceeds the abundance of about 2% reported in the first discovery of ancient zircons in a quartzite from the Narryer metasediments, and is equivalent to the abundance of >3900 Ma zircons in metaconglomerate sample W74 from the Jack Hills, confirmed by new measurements reported in this paper. Most analyses of the Narryer and the Jack Hills detrital zircon populations are discordant. The Jack Hills zircon analyses are dominated by strong recent Pb loss whereas the Narryer zircon analyses have had a more complex history and have experienced at least one Pb loss event, possibly associated with the high-grade metamorphism at ca. 2700 Ma, and a further disturbance of the U–Pb systems during relatively recent times. Although the number of analyses is limited and many of the zircon analyses are discordant, the age distributions of the older (>3900 Ma) zircons from the Narryer and Jack Hills samples are different, suggesting a complex provenance for the ancient zircons. The distribution of ages in the younger population of Mt Narryer zircons is similar to that reported for zircons from the surrounding Meeberrie gneiss, supporting previous suggestions that zircons from the gneisses or their precursors were a major contributor to the detrital zircon suite. The younger zircon population from Jack Hills sample (W74), lacks the strong age peak from 3600 to 3750 Ma present in the Narryer zircon population, and conversely the strong zircon age group at ca. 3350–3500 Ma in the Jack Hills population is only weakly represented in the Narryer zircon population. The age distributions for the Narryer and the Jack Hills zircon populations are taken as benchmarks for comparing zircon populations from quartzite occurrences elsewhere in the Yilgarn Craton.  相似文献   

4.
LA-ICP-MS U-Pb dating and in situ Hf isotope analysis were carried out for the detrital zircons to constrain the depositional age and provenance of the Wawukuang Formation, which is believed as the earliest unit of the Laiyang Group in the Jiaolai Basin, and its implications. Most of these detrital zircons from the feldspar quartz sandstone in the Wawukuang Formation are magmatic in origin, which are euhedral-subhedral and display oscillatory zoning in CL images; whereas few Late Triassic detrital zircons are metamorphic in origin and structureless in CL images. U-Pb isotopic dating of 82 zircon grains yields age populations at ca. 129 Ma, 158 Ma, 224 Ma, 253 Ma, 461 Ma, 724 Ma, 1851 Ma and 2456 Ma. U-Pb dating and Hf isotopic results indicate that: 1) the Wawukuang Formation deposited during the Early Cretaceous (129-106 Ma); 2) the detrital zircons with the ages of 1851 Ma and 2456 Ma mainly sourced from the Precambrian basement rocks of the North China Craton; the Neoproterozoic (729-721 Ma) magmatic zircons and the Late Triassic (226-216 Ma) metamorphic zircons sourced from the Su-Lu terrane; The Late Paleozoic detrital zircons could source from the Late Paleozoic igneous rocks in the northern margin of the North China Craton; the Late Triassic (231-223 Ma) magmatic zircons and the 158-129 Ma zircons sourced from the coeval igneous rocks in the Jiaobei and Jiaodong; 3) the deposition age and provenance of the Jiaolai Basin are different from those of the Hefei Basin; 4) the recognition of clastic sediments from the Su-Lu terrane in the Wawukuang Formation suggests that the Su-Lu terrane was under denudation in the Early Cretaceous. ©, 2015, Science Press. All right reserved.  相似文献   

5.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

6.
The Qinling Orogen, central China, was constructed during the Mesozoic collision between the North China and Yangtze continental plates. The orogen includes four tectonic units, from north to south, the Huaxiong Block (reactivated southern margin of the North China Craton), North Qinling Accretion Belt, South Qinling Fold Belt (or block) and Songpan Fold Belt, evolved from the northernmost Paleo-Tethys Ocean separating the Gondwana and Laurentia supercontinents. Here we employ detrital zircons from the Early Cretaceous alluvial sediments within the Qinling Orogen to trace the tectonic evolution of the orogen. The U–Pb ages of the detrital zircon grains from the Early Cretaceous Donghe Group sediments in the South Qinling Fold Belt cluster around 2600–2300 Ma, 2050–1800 Ma, 1200–700 Ma, 650–400 Ma and 350–200 Ma, corresponding to the global Kenorland, Columbia, Rodinia, Gondwana and Pangaea supercontinent events, respectively. The distributions of ages and εHf(t) values of zircon grains show that the Donghe Group sediments have a complex source comprising components mainly recycled from the North Qinling Accretion Belt and the North China Craton, suggesting that the South Qinling Fold Belt was a part of the united Qinling–North China continental plate, rather than an isolated microcontinent, during the Devonian–Triassic. The youngest age peak of 350–200 Ma reflects the magmatic event related to subduction and termination of the Mian-Lue oceanic plate, followed by the collision between the Yangtze Craton and the united Qinling–North China continent that came into existence at the Triassic–Jurassic transition. The interval of 208–145 Ma between the sedimentation of the Early Cretaceous Donghe Group and the youngest age of detrital zircons was coeval with the post-subduction collision between the Yangtze and the North China continental plates in Jurassic.  相似文献   

7.
马铭株  章雨旭  颉颃强  万渝生 《岩石学报》2014,30(10):2973-2988
白云鄂博群位于华北克拉通北缘,由于赋存超大型REE-Nb-Fe矿而受到广泛关注。白云鄂博群形成时代有中元古代、古生代等不同认识。腮林忽洞群位于白云鄂博群的南部,与白云鄂博群的关系也有不同认识。本文报道了白云鄂博群和腮林忽洞群底部中-粗粒砂岩的碎屑锆石SHRIMP U-Pb年龄和LA-ICPMS Hf同位素组成。两个岩群碎屑沉积岩的碎屑锆石在形态和内部结构上类似,按结构特征可分为继承或捕获锆石、岩浆锆石、变质锆石和重结晶锆石等不同类型。年龄都主要分布在1.8~2.1Ga之间和2.4~2.7Ga之间,尽管年龄峰值存在一定区别。它们的Hf同位素组成也类似,εHf(t)和tDM2(Hf)变化范围分别主要在约-6.0~6.0之间和2550~2950Ma之间。结合前人研究,可得出如下结论:白云鄂博群和腮林忽洞群的物源区类似,主要由新太古代晚期和古元古代晚期岩浆岩组成,为新太古代早期陆壳物质再循环产物;部分岩石遭受新太古代晚期和古元古代晚期高级变质作用改造;碎屑物质都来自华北克拉通北缘早前寒武纪变质基底,与其形成时代相同的认识不矛盾。  相似文献   

8.
Here, we present the results of U–Pb dating of detrital zircons from the Ergunahe Group and the Wubinaobao Formation, within northeastern Inner Mongolia, NE China, with the aim of constraining the tectonic setting of the Erguna Massif. The majority of detrital zircons from five samples collected from the Ergunahe Group and the Wubinaobao Formation are magmatic, although some zircons have metamorphic growth rims. Zircons in two mica schists and in feldspar–quartz sandstone from the Ergunahe Group yield age populations that cluster around 738, 760, 792, 837, 890, 964, and 1050 Ma, whereas zircons from two quartz sandstones within the Wubinaobao Formation yield age populations that cluster at 466, 484, 515, 738, 795, 837, and 894 Ma. These data, combined with detrital zircon age populations (ca. 712 Ma) from the adjacent Xinghuadukou Group, and the fact that the Ergunahe Group intruded by Caledonian gabbros is overlain by upper Silurian units, indicate that the Ergunahe Group formed at 738–712 Ma (i.e. during the Neoproterozoic). In addition, the Wubinaobao Formation is subdivided into two units: a calcareous siltstone unit within the western part of the study area and a quartz sandstone within the eastern part. The calcareous siltstone formed at 712–795 Ma, similar to the Ergunahe Group, whereas the quartz sandstone formed between the 466 Ma and late Silurian. The age spectra of detrital zircons from the Ergunahe Group and the Wubinaobao Formation indicate that sediment in both of these units was derived from terranes that outcrop around the basin. The widespread occurrence of Neoproterozoic detrital zircons within both the Ergunahe Group and the Wubinaobao Formation suggests that Precambrian terranes are present within the Erguna Massif and that the massif has an affinity to the Siberian Craton.  相似文献   

9.
ABSTRACT

Due to sparse data for deciphering the late Neoproterozoic tectonic history, there is still considerable debate on whether long-lasting superplume-related or long-duration subduction-related dynamics dominated the Tarim Craton. In this contribution, our field investigations detail the late Neoproterozoic siliciclastic successions, and we report the first granitic conglomerates with zircon U–Pb ages of 753.9 ± 3.7 Ma in the SW Tarim Craton. Importantly, detrital zircons from the thick Cryogenian sedimentary basin also contain a major zircon population at ca. 750 Ma. Together with seismic data, this suggests a large ca. 750 Ma magmatic event in the SW Tarim Craton. Geochemically, the granitic clasts exhibit A-type granite features with high SiO2, high alkali but extremely low K, high FeOT/MgO and Ga/Al, and high high-field strength elements (HFSEs) (i.e. Nb, Hf, and Ta) with significant depletion in Rb, K, Sr, P, Eu, and Ti, and significant negative Eu anomalies (Eu* = 0.13–0.36), showing ferroan granite affinities. Including the detrital zircons, the ca. 750 Ma zircons have a large range of negative εHf(t) values (?19.46 to ?1.16). Elemental and zircon Hf isotope data suggest that the granites were derived from Palaeoproterozoic reworked continental crust and are probably related to crustal thinning and extension. By comparison with previous studies, we conclude that Rodinia breakup was diachronous in the outer parts of the supercontinent.  相似文献   

10.
内蒙古狼山地区宝音图地块是兴蒙造山带微地块之一.采用SHRIMP和LA ICP-MS锆石U-Pb测年技术,对宝音图地块中变质侵入体和宝音图群石英岩中的锆石进行了同位素年代学研究,获得了变质侵入体SHRIMP锆石U-Pb年龄1672±10Ma和宝音图群石英岩的碎屑锆石U-Pb下限年龄1426Ma,限定了宝音图群的形成时代应晚于1426Ma.同时根据宝音图群碎屑锆石年龄谱构造-热事件信息与华北克拉通构造-热事件年龄谱对比的相似性,揭示了宝音图群的碎屑来源于华北克拉通,认为宝音图地块与华北克拉通更具亲缘性,可能为华北克拉通的一部分.  相似文献   

11.
靳立杰 《地质与勘探》2024,60(3):515-529
Inkisi组是泛非运动之后刚果盆地最早的沉积地层之一。确定Inkisi组地层时代、物源及恢复构造演化过程,对研究刚果盆地的演化具有重要地质意义。本文通过对Inkisi组碎屑锆石进行U-Pb年代学研究,深入探讨了其形成时代,对泛非运动进行了约束,并进一步探讨了其物源。研究发现,Inkisi组下段与上段碎屑锆石最小年龄分别为526±6 Ma和534±14 Ma,最年轻的4颗锆石的加权平均年龄为532±9.4 Ma,由此限定了Inkisi组的最大沉积时代。因此将其时代划归早寒武世,并将其从新元古界Xisto-Gresoso群解体。另外,Inkisi组岩石并未发生变质变形,也说明其形成于泛非运动之后。碎屑锆石年龄谱结果显示,Inkisi组碎屑锆石的年龄变化范围较广,整体呈现五个年龄峰值:>2800 Ma、2800~2400 Ma、2100~1750 Ma、1500~900 Ma、850~500 Ma。通过将年龄峰值及周围地质体进行对比,认为西刚果造山带、卡赛克拉通、安哥拉克拉通是其主要的物源,卢弗里安构造带等是其次要物源。  相似文献   

12.
胡波  翟明国  郭敬辉  彭澎  刘富  刘爽 《岩石学报》2009,25(1):193-211
化德群出露地区位于华北克拉通北缘中部,紧邻中亚造山带南缘,呈近东西向展布。在它的西边是早-中元古代的白云鄂博裂谷和渣尔泰—狼山裂谷,东南面是由长城系、蓟县系和青白口系组成的早-新元古代的燕辽裂陷槽,南边分布着1.9~1.8Ga麻粒岩相变质的丰镇群(孔兹岩系),北边出露有代表中亚造山带的古生代岩石。化德群由一套浅变质和未变质的沉积岩组成,无火山岩夹层。地层序列包含多个沉积旋回,每个旋回自下而上为含砾砂岩、砂岩、碳酸盐岩和泥质岩。岩石组合反映了从河流—滨海—浅海相的沉积环境。化德群的地层序列可以和白云鄂博群及渣尔泰群相对比。本文对化德群四个变质砂岩样品中的碎屑锆石进行了LA-ICP-MS U-Pb年龄测定,年龄主要集中在1800±50Ma和1850±50Ma,另外还有~2500Ma和~2000Ma的次要峰值。化德群底部变质含砾云母长石石英砂岩中碎屑锆石的最小谐和年龄是1758±7Ma,限定了化德群沉积时代的下限。碎屑锆石的CL图像显示,1800±50Ma和1850±50Ma的锆石主要是变质成因,少量岩浆成因,说明化德群的源区主要是古元古代的变质岩,少量岩浆岩。~2500Ma和~2000Ma的碎屑锆石代表了更为古老的源区。碎屑锆石的U-Pb年龄限制了化德群的沉积时代为古元古代晚期—中元古代,年龄峰值对应华北克拉通的重要构造热事件,而无与中亚造山带地质事件相关的年龄信息。沉积组合特征表明化德群属于稳定的浅水—半深水沉积盆地。化德盆地、渣尔泰—狼山盆地和白云鄂博盆地共同构成华北克拉通北缘的被动陆缘裂谷系,该裂谷系的形成可能与燕辽及熊耳裂陷槽的打开是同时期的。因此,华北克拉通的北界应该置于化德群出露区域以北。基于锆石特征的详细分析及对比,我们认为化德群以南的孔兹岩系可能是化德群的主要源区。  相似文献   

13.
Conventional and SHRIMP U-Pb analyses of zircon, monazite, titanite and apatite from the high grade rocks of the Northampton Complex in Western Australia provide constraints on the timing of metamorphic processes and deformation events in the northern Darling Mobile Belt (western margin of the Archean Yilgarn Craton). Paragneisses and mafic volcanics and/or intrusions have undergone granulite facies metamorphism in a probable extensional tectonic setting prior to formation of W- to NW-verging folds and thrusts cut by normal shears (interpreted as late collapse structures) during the main deformation event (D1). These structures are folded by open to tight folds with NW-striking axial surfaces developed in a second, NE-SW contractional event (D2). Zircons from a mafic granulite provide an age of 1079 ± 3 Ma attributed to new zircon growth prior to, or at the peak of regional granulite facies metamorphism. Metamorphic monazites extracted from a paragneiss yield an identical age of 1083 ± 3 Ma. The similarity of ages between zircons from the mafic granulite (1079 ± 3 Ma) and monazites from the paragneiss (1083 ± 3 Ma) is interpreted to reflect fast cooling and/or rapid uplift, which is consistent with thrusting of the gneissic units during the first deformation event (D1) associated with the onset of retrograde metamorphism. Granitic activity at 1068 ± 13 Ma was followed by intrusion of post-D2 pegmatite (989 ± 2 Ma), which constrains the end of metamorphism and associated deformation. Cooling of the complex to about 500 °C is timed by the apatite age of 921 ± 23 Ma. SHRIMP U-Pb ages of detrital zircons from a paragneiss sample yield a maximum age of 2043 Ma, with no evidence of an Archean Yilgarn signature. A majority of ages between 1.6 and 1.9 Ga are consistent with derivation from the Capricorn Orogen on the northern margin of the Yilgarn Craton. Younger detrital zircons with 1150–1450 Ma ages, however, indicate an additional source that had undergone early Grenvillian igneous or metamorphic event(s) and also places a maximum age constraint upon deposition. The source of this clastic material may have been from within the southern Darling Mobile Belt or from Greater India (adjacent to the Northampton Complex in Rodinia reconstructions). This study documents an extended Grenvillian history, with basin formation, sedimentation, granulite facies metamorphism, contractional tectonics (two periods with orthogonal directions of shortening) and late pegmatite emplacement taking place between 1150–989 Ma on the western margin of the Yilgarn Craton. Ages recorded in this study indicate that the proposed global distribution of Grenvillian belts during assembly of the Rodinia supercontinent should be reassessed to include the Darling Mobile Belt. Received: 7 January 1998 / Accepted: 10 March 1999  相似文献   

14.
The Phanerozoic cooling history of the Western Australian Shield has been investigated using apatite fission track (AFT) thermochronology. AFT ages from the northern part of the Archaean Yilgarn Craton, Western Australia, primarily range between 200 and 280 Ma, with mean confined horizontal track lengths varying between 11.5 and 14.3 μm. Time–temperature modelling of the AFT data together with geological information suggest the onset of a regional cooling episode in the Late Carboniferous/Early Permian, which continued into Late Jurassic/Early Cretaceous time. Present-day heat flow measurements on the Western Australian Shield fall in the range of 40–50 mW m−2. If the present day geothermal gradient of  18 ± 2 °C km−1 is representative of average Phanerozoic gradients, then this implies a minimum of  50 °C of Late Palaeozoic to Mesozoic cooling. Assuming that cooling resulted from denudation, the data suggest the removal of at least 3 km of rock section from the northern Yilgarn Craton over this interval. The Perth Basin, located west of the Yilgarn Craton, contains up to 15 km of mostly Permian to Lower Cretaceous clastic sediment. However, published U–Pb data of detrital zircons from Permian and Lower Triassic basin strata show relatively few or no grains of Archaean age. This suggests that the recorded cooling can probably be attributed to the removal of a sedimentary cover rather than by denudation of material from the underlying craton itself. The onset of cooling is linked to tectonism related to either the waning stages of the Alice Springs Orogeny or to the early stages of Gondwana breakup.  相似文献   

15.

High thorium euhedral, twinned and elongate zircons from the felsic part of a mafic dyke located in the Archaean Yilgarn Craton approximately 30 km northeast of Perth and approximately 2 km east of the Darling Fault, have consistent 207 Pb/ 206 Pb ages of 1214 ± 5 Ma. This age is interpreted as the age of dyke emplacement and is identical, within the uncertainties, with other U–Pb dyke ages reported for the southwest Yilgarn Craton. The present result extends the known occurrence of ca 1210 Ma dykes to the western margin of the Yilgarn Craton and confirms earlier conclusions that a major mafic dyke emplacement occurred throughout the southern Yilgarn Craton during a short‐lived magmatic pulse at ca 1210 Ma.  相似文献   

16.
朱永峰 《岩石学报》2012,28(7):2113-2120
在新疆西南天山科桑溶洞地区,新厘定出一套斜长角闪岩-花岗岩地质单元:侵入斜长角闪岩中的新元古代白云母花岗岩(片麻状构造)、以及侵入上述古老岩石单元的早奥陶世花岗岩(块状构造)。片麻状白云母花岗岩中锆石具有热液锆石边、岩浆锆石幔和碎屑锆石核(边-幔-核结构),剔除被热液锆石和碎屑锆石混染的SHRIMP测点,获得岩浆锆石幔的加权平均年龄752.3±5.1Ma(MSWD=0.95),代表岩浆的结晶年龄。块状花岗岩的锆石具有边-核结构,热液锆石边的U-Pb年龄(419.5±5.7Ma)明显偏低。剔除热液锆石和碎屑锆石,获得岩浆锆石的平均U-Pb年龄481.1±4.4Ma(MSWD=0.88),代表花岗岩的结晶年龄。早奥陶世早期,岩浆侵入新元古代片麻状白云母花岗岩中。在晚志留世或者更晚时期,两类花岗岩共同经受了变质热液改造,变质流体交代岩浆锆石,导致锆石溶蚀再生长。  相似文献   

17.
《地学前缘(英文版)》2018,9(6):1725-1743
The western Ordos Basin(WOB), situated in a tectonic transition zone in the North China Craton, acts as an excellent example for studying the Mesozoic intraplate sedimentation and deformation in Asia. In this study, U-Pb ages for 1203 detrital zircons of 14 sandstone samples collected from 11 sections are presented to unravel the sediment source locations and paleogeographic environments of the Early-Middle Jurassic coal-bearing Yan'an Formation in the WOB. Data show that there are five prominent age groups in the detrital zircons of the Yan'an Formation, peaking at ca. 282 Ma, 426 Ma, 924 Ma, 1847 Ma, and2468 Ma. Samples from the northern, middle, and southern parts of the WOB contain these five age categories in various proportions. In the northern region, the Yan'an Formation exclusively contains Early Permian detrital zircons with a single age group peaking at 282 Ma, matching well with the crystallizing ages of the widespread Early Permian granites in the Yinshan Belt to the north and the Alxa Block to the northwest. While in the southern region, the Yan'an Formation mainly contains three groups of detrital zircons, with age peaks at 213 Ma, 426 Ma, and 924 Ma. These zircon ages resemble those of the igneous rocks in the Qilian-Qinling Orogenic Belt to the south-southwest. Samples in the middle region, characterized by a mixture age spectrum with peaks at 282 Ma, 426 Ma, 924 Ma, 1847 Ma and 2468 Ma, are previously thought to have mixed derivations from surrounding ranges. However, by referring to the detrital-zircon age compositions of the pre-Jurassic sedimentary successions and combining with paleontological and petrographic analysis, we firstly propose that the sediments of the Yan'an Formation in the middle region were partly recycled from the Triassic and Paleozoic sedimentary strata in the WOB.The occurrence of recycled sedimentation suggests that the Late Triassic-Early Jurassic intraplate compressional deformation was very intense in the WOB, especially for regions in front of the Qilian Orogenic Belt.  相似文献   

18.
兴华渡口群等大兴安岭北部前寒武纪变质岩系的组成和演化对于确定额尔古纳和兴安地块的构造属性具有重要意义,是近年大兴安岭北部基础地质研究的热点之一。本次工作通过对黑河北部石灰窑—明智山一带的兴华渡口群二云石英片岩和"混合岩"进行锆石LA-ICP-MS U-Pb定年发现该变质岩系并非前寒武纪变质岩,而是由早古生代碎屑沉积岩(或变质岩)和晚古生代岩浆岩经后期构造岩浆作用改造而形成的构造杂岩。其中二云石英片岩中具有岩浆成因特征的碎屑锆石核部年龄主要存在401~427 Ma、442~448 Ma、473~517 Ma、639~714 Ma、757~818Ma、896~933 Ma和1704~1751 Ma 7个年龄组,其中473~517 Ma段碎屑锆石的峰最明显,与早古生代多宝山组岛弧火山岩等早古生代岩浆作用形成时间相一致,其他年龄组亦在区域上其他地区有报道,这表明该变质岩的原岩物源来源较广泛,不仅有元古宙岩浆岩和变质岩系,还有大量的早古生代岩浆岩,因此其原岩形成时代不应是前寒武纪,而是早古生代。根据碎屑锆石最小峰值年龄,本次工作推断该二云石英片岩原岩的最大沉积年龄应不早于416Ma,另外大量的元古宙碎屑锆石表明区域上可能存在前寒武纪变质基底。对所谓混合岩的调查发现其应为发生动力变质的糜棱岩化二长花岗岩,其中岩浆锆石(304.5±3.1)Ma的206Pb/238U加权平均年龄反映花岗岩形成于晚石炭世晚期,该期花岗岩为晚古生代兴安地块东缘花岗岩带的一部分。  相似文献   

19.
Discoveries of >4 Ga old zircon grains in the northwest Yilgarn of Western Australia led to the conclusion that evolved crust formed on the Earth within the first few 100 Ma after accretion. Little is known, however, about the fate of the first crust that shaped early Earth's surface. Here we report combined solution and laser-ablation Lu–Hf–U–Pb isotope analyses of early Archean and Hadean detrital zircon grains from different rocks of the Narryer Gneiss Complex (NGC), Yilgarn Craton, Western Australia. The zircons show two distinct groups with separate evolutionary trends in their Hf isotopes. The majority of the zircon grains point to separation from a depleted mantle reservoir at ∼3.8–3.9 Ga. The second Hf isotope trend implies reworking of older Hadean zircon grains. The major trend starting at 3.8–3.9 Ga defined by the Hf isotopes corresponds to a Lu/Hf that is characteristic for felsic crust and consequently, the primary sources for these zircons presumably had a chemical composition characteristic of continental crust. Reworked Hadean crust appears to have evolved with a similar low Lu/Hf, such that the early crust was probably evolved with respect to Lu–Hf distributions. The co-variation of Hf isotopes vs. age in zircon grains from Mt. Narryer and Jack Hills zircon grains implies a similar crustal source for both sediments in a single, major crustal domain. Age spectra and associated Hf isotopes in the zircon grains strongly argue for ongoing magmatic reworking over hundreds of millions of years of the felsic crustal domain in which the zircon grains formed. Late-stage metamorphic zircon grains from the Meeberrie Gneiss unit yield a mean U–Pb age of 3294.5 ± 3.2 Ma with initial Hf isotopes that correspond to the evolutionary trend defined by older NGC zircon grains and overlap with other detrital zircon grains, proving their genetic relationship. This ‘Meeberrie event’ is interpret here as the last reworking event in the precursor domain before final deposition. The continuous magmatic activity in one crustal domain during the Archean is recorded by the U–Pb ages and Hf isotope systematics of zircon grains and implies reworking of existing crust. We suspect that the most likely driving force for such reworking of crustal material is ongoing crustal collision and subduction. A comparison of Hf isotope signatures of zircon grains from other Archean terranes shows that similar trends are recognised within all sampled Archean domains. This implies either a global trend in crustal growth and reworking, or a genetic connection of Archean terranes in close paleo-proximity to each other. Notably, the Archean Acasta gneiss (Canada) shows a similar reworking patterns to the Yilgarn Craton of Hadean samples implying either a common Hadean source or amalgamation at the Hadean–Archean transition.  相似文献   

20.
刘建辉  刘福来  丁正江  刘平华  王舫 《岩石学报》2014,30(10):2941-2950
古老陆壳物质的发现与鉴别是探索地球早期陆壳形成与演化历史的重要内容之一,锆石U-Pb年龄结合Hf同位素研究是该研究的重要手段。本文通过对胶北地体内一个长英质副片麻岩中的锆石开展系统的原位U-Pb定年和微量、稀土元素分析,获得了多个太古宙早期的锆石。根据这些锆石的阴极发光图像、Th/U比值及稀土元素球粒陨石标准化配分模式,它们具有典型岩浆锆石的特征,其中2个分析点给出了3413Ma和3400Ma(~3.4Ga)的锆石U-Pb年龄,7个分析点给出3547±19Ma(MSWD=1.16)的锆石U-Pb年龄,指示太古宙早期的陆壳岩浆事件;结合华北克拉通其它地区的类似研究结果,暗示华北克拉通可能曾经存在比现今出露面积更大的太古宙早期的古老陆壳。这些古老锆石的Hf同位素分析显示,它们的εHf(t)值在-6.19~0.95之间,平均为-2.54,两阶段Hf模式年龄在3737~4353Ma之间,平均值为~4.1Ga,远大于锆石的U-Pb年龄,指示华北克拉通存在~4.1Ga的地壳增生作用及古老陆壳(3.55Ga)的再循环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号