首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马德华 《气象》1980,6(7):31-31
一般人们总认为,无论在北半球还是在南半球,龙卷风都是气旋式旋转的,即在北半球呈反时针旋转,南半球呈顺时针旋转,而反气旋式龙卷风则非常稀少。但从研究来看,反气旋式龙卷风也可经常发生,而且,反气旋式龙卷风常常还会在气旋式龙卷风的附近形成发展,两者的距离远近不一,远的可相  相似文献   

2.
通过对大气流场在奇点处作速度场分解,确定雅可比矩阵特征值与大气运动形式之间的关系,以分析二维气旋、反气旋流场的特性,进一步了解实际二维大气的单个涡旋形态的动力学特性和形成机制。研究认为,任意水平速度场均可分解为线性的含有涡度场(与反对称矩阵对应)和变形场(与对称矩阵对应)的形式。高层地转平衡的高(低)压系统,奇点附近只有负(正)涡度场而无变形场,在天气图上表现为只有顺(逆)时针旋转的闭合涡旋。低层考虑摩擦的高(低)压系统,奇点附近不仅有负(正)涡度场,还有变形场。也就是说,在北半球高压不仅有顺时针旋转气流,还有向外的辐散气流;低压不仅有逆时针旋转气流,还有辐合气流。  相似文献   

3.
温带气旋     
柯甫 《气象》1976,2(6):29-31
气旋是产生大范围降水、大风等天气现象的主要系统,它的水平尺度是二、三百公里至二、三千公里,属中间尺度系统。 一、气旋的分类 在北半球的不同地区,围绕中心作逆时针旋转的低压系统,按热力性质不同,一般把它分为三类。即温带气旋、副热带气旋和热带气旋。温带气旋主要出现在副热带高压北边的中、高纬地区。它发生在极地空气和热带空气交汇之处,斜压性强,气旋中心比四周冷。这种  相似文献   

4.
大气涡旋的螺旋结构   总被引:1,自引:1,他引:1  
利用速度场的分解,说明大气中常见的斑图.速度场可分为变形场和旋转场.若大气动力学方程中只有气压梯度力和科里奥利力平衡,此时速度场只有旋转场,地面天气图上气旋反气旋斑图是闭合的.若再加上摩擦力,则斑图为实际的气旋反气旋螺旋.对三维有水平辐散辐合的涡旋,其斑图为三维螺旋型式,常见是漏斗状.台风小口朝上,龙卷风大口朝上.  相似文献   

5.
大气中尺度涡旋的三维螺旋结构理论   总被引:12,自引:1,他引:11  
文中应用描写大气运动的方程组求得了中尺度涡旋的三维定常流场以及相应的压力场和温度场 ,其中的三维流场构成了物理空间的一个非线性自治动力系统。理论分析和计算表明 :若中尺度涡旋的下层流体呈气旋 (反气旋 ) ,且伴有水平辐合 (散 )的螺旋转动 ,则通过上升(下沉 )运动 ,其上层流体呈反气旋 (气旋 )且伴有水平辐散 (合 )的螺旋转动 ,从而形成中尺度涡旋的三维螺旋结构。这些都与实际大气中的中尺度涡旋结构相似。它充分说明 :在旋转有粘性的大气中 ,为了保证质量守恒 ,必须有这种螺旋结构。  相似文献   

6.
为探讨黄海海洋涡旋的三维结构特征、能量输送与转换及影响机制,对黄海海域典型台风海洋气旋与近海海湾反气旋式涡旋个例进行数值模拟和时空诊断分析。采用FVCOM(Finite Volume Community Ocean Model)区域海洋数值模式精细化描述台风海洋涡旋与近海海洋中小尺度涡旋系统。对涡旋能量传输特征模拟显示,气旋式和反气旋式海洋涡旋中,非对称强流区动能能量下传比涡旋中心部位的强度更强,维持时间更长,下传深度更深。反气旋式海洋涡旋因Ekman流动形成的向中心辐合作用,造成此类差异更显著。气旋涡的动能主要来源于台风的近海面风应力动能和海洋涡旋有效位能的转换,反气旋涡旋区域风动力偏弱,其动能强度维持在低位,其涡旋增强伴随着有效位能的增加。环境因子影响机制从风浪,底摩擦和地形三方面讨论。结果显示:耦合波浪模块后,台风强风应力和风浪的综合作用扩大台风海洋涡旋尺度,并增强涡旋环流强度,同时对相邻的反气旋涡有压缩和减弱作用。风浪效应对台风海洋涡旋有正贡献。强台风过程表层环流响应台风应力而浅水地形和底摩擦强烈影响涡旋下层,造成台风海洋涡旋结构在垂直方向上偏移,并影响到下层环流速度减小,流向与表层相反。在海洋气旋涡和反气旋涡的显著辐散区,其混合层下方有温盐要素的涌升对应,辐合区有温盐要素的下沉对应;同时海底地形的升降也造成温盐强迫上升与下降,其强度与地形起伏尺度成正比,较环流系统作用更强。  相似文献   

7.
所谓风即空气之流动。大气的运动有垂直运动和水平运动,有顺时针运动,有反时针运动,但是无论那种类型的运动,都是在某个作用力的推动下的移动。由运动方程可知,作用于质量上的力作用越大,质量移动速度越大,即风力越大。同时大气的组成又是由各种类型的涡旋运动着的大气团构成,各气团又具有各自特殊的属性,如温、湿、压等都存在着很大的  相似文献   

8.
南半球10 hPa极地涡旋的多尺度变化特征分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用NCEP/NCAR 10 hPa月平均高度场资料, 计算了1948\_2007年南半球10 hPa极地涡旋的强度指数P、 面积指数S和中心位置指数(λc, φc)。用它们分析了南半球10 hPa极地涡旋的季节变化、 年际异常及其可能成因, 分析了10 hPa极地涡旋强度与南极涛动的关系。结果表明: (1) 南半球10 hPa极区12月~1月受反气旋控制, 3~10月受气旋控制, 2月、 11月为环流转换季节。(2) 1(7)月反气旋(气旋)指数P\, S均在1970年代后期发生了显著的跃变; 跃变前反气旋(气旋)由极弱(极强)振荡地增强(减弱)至接近气候均值, 跃变后反气旋由极强振荡趋于气候均值, 气旋在偏弱的状态下振荡。(3) 1月反气旋中心位置存在显著的年代际变化, 而7月气旋中心位置的年际变化明显。(4) 臭氧异常可引起南半球10 hPa 1月极地反气旋年际异常(正相关), 但与7月极地气旋异常无关。(5) 1月、 7月极地涡旋强度指数P与南极涛动指数(AAOI)呈显著的负相关, 可由P来表征AAOI。  相似文献   

9.
热带气旋生成过程的中尺度涡旋活动数值模拟   总被引:1,自引:1,他引:0  
姜舒婕  吴立广  梁佳 《气象科学》2016,36(6):779-788
热带气旋生成过程中包含不同尺度环流及其相互作用。为此,本文将热带气旋生成数值模拟的起点提前到模拟中尺度涡旋(MCV)的生成,从而利用高分辨率数值试验结果,对热带气旋过程中的不同尺度涡旋活动进行分析。模式首先模拟了季风涡旋的东南侧增强的西南气流中出现低形变旋转性扰动,随着扰动的旋转性增强,中层出现水平尺度为200 km左右的MCV。在扰动区内的不同高度上还发现10~20 km尺度不等的中γ气旋性涡旋扰动,其中部分涡旋扰动具有热塔的特征,中γ气旋性涡旋扰动在MCV的旋转环境内不断组织化,低层气旋性涡旋扰动的分布比中层更加集中。模拟表明这些较小尺度的气旋性中尺度涡旋扰动对热带气旋的生成有重要作用。  相似文献   

10.
本文应用带通滤波分析方法,详细分析了1984年7月24~25日发生在青藏高原东南坡的一次MCC过程与中尺度扰动的联系,结果表明:MCC的发展演变与中尺度扰动密切相关,两者属于同一系统的两种表现形式。只有当MCC发展到强盛期时,中尺度扰动才呈现出类似热带系统性质的低层气旋辐合、高层反气旋辐散的准园型深厚系统。此时,MCC中心与扰动涡旋中心完全重合。而在MCC初生和衰亡阶级,MCC中心与扰动涡旋中心不一致,MCC对应低层中尺度气旋环境东部,高层反气旋环流西南部。对MCC初生,发展和消亡三阶段的中尺度扰动涡度,散度的诊断得知,深厚的扰动正涡度、辐合对应于MCC的发生和发展;弱而浅薄的正涡度、辐合则对应于MCC的减弱和消亡。  相似文献   

11.
刘式达  刘式适  付遵涛 《大气科学》2014,38(6):1041-1043
在定常条件下,利用简化的大气运动控制方程,分析了气旋与反气旋的基本特征。在此基础上,利用常微分方程的定性分析与求解,获得了气旋和反气旋轨道的解析解。接合气旋与反气旋的基本特征,论证了正负阻尼在气旋和反气旋运动中具体体现,并从物理机理上说明产生气旋和反气旋运动中正负阻尼的差异在于水平辐合在低层的不同。  相似文献   

12.
热带气旋逆时针打转物理机制的研究   总被引:1,自引:2,他引:1  
应用一个无基本气流的准地转斜压模式数值模拟热带气旋逆时针打转运动。分析结果表明:对称气流对非对称涡度的平流引起非对称流场中的小尺度涡旋和通风气流逆时针旋转;旋转的通风气流引导热带气旋作逆时针打转运动。  相似文献   

13.
通过数值模拟来研究热带气旋中的β偶极涡环流,结果可见,在中层的偏差流场上,有清晰的β偶极涡环流,即涡旋中心以西为气旋性环流,以东为反气旋性涡旋,理论分析表明,该β偶极涡环流是由地转涡度平流造成的。  相似文献   

14.
用雷达作为工具来观测强烈对流风暴(雷暴、冰雹、龙卷,跑线等)是一种极为有效的手段。把风暴回波的移动与高空风资料相配合,经常可以看到风暴在发展的强盛阶段,其移动往往偏于高空风的右侧,在初生阶段或消散阶段,云体的移动常与高空平均风向一致。国内外的许多工作者已注意到这个现象。用雷达观测对流风暴时,常常发现在风暴的强盛阶段,其回波的水平剖面图象呈现出气旋状的涡旋结构。图1给出1971年8月6日的一帧雷达回波图片。从这样一组图片可以看出,这类风暴的云体质点在水平面上的移动,既呈现出反时针旋转(气旋式)的运动,同时又向云体中某中心辐合。按照流体动力学的观  相似文献   

15.
第三讲:滤波     
大气中存在各种不同规模的运动和运动系统,水平尺度从几十米至几千公里,时间尺度从数十分钟至数月。根据运动的水平尺度一般将大气运动分成三类:水平尺度在千公里及其以上的运动系统称大尺度天气系统,如大气长波、超长波、气旋、反气旋、高空急流及副热带高压等天气系统;水平尺度在数十公里以内的为小尺度天气系统,如龙卷、局地  相似文献   

16.
通过线性分层旋转流体的实验室试验,分析了翻越山脉的大气大尺度运动的模拟问题。分析表明,在f-平面模型条件下其相似标准须包括匹配Rossby数、Burger数和Ekman数以及用流体深度标准化了的山地高度函数。流体深度与地形宽度之比不具有零阶重要性,这使实验室的模型能够使用夸大了的垂直尺度对于水平尺度之比。模型在大气参数变化范围内,让f-平面西凤气流翻越落矶山。对不同深度的平面流型和不同的系统参数值作了定量分析。实验对于山地上空的脊、山地东部的下游槽以及脊和槽的一般走向,都给出了相当合理的结果。试验还指出,当流体以平均风速相对于一个观测者移动时,在山地中部的东南方可以找到一个闭合的气旋性涡旋。当Rossby数增大时,该气旋扰动将越来越移向东北。此外,在山地中心的正北方,沿着山脊有一个静止的反气旋涡旋。该反气旋的位置随着Rossby数的变化并不十分敏感。还展示了落矶山模型南部、中部和北部垂直剖面上流体的运动状况。这些运动呈现尾流流型的特征,尤其垂直运动场是如此。最后,试验给出了一个位于模型中部上空,具有切断低压的槽向东平流的情况。在山脉上游切断低压略微移向东北,而在穿过山峰时明显折向南方;切断低压的中心在翻越山脉时加速,然后在山脉的背风坡减速。实验室中的这些结果定性地类似于大气中切断低压翻越落矶山脉时的观测结果。  相似文献   

17.
利用WRF中尺度数值模式,NCEP/NCAR分析资料,多普勒雷达观测资料等,对2016年7月25日一次东北冷涡下的飑线过程进行数值模拟,研究了飑线形成和维持与水平涡度的关系及飑线过程中中尺度对流涡旋(MCV)的形成机制,分析发现,高低层水平涡度逆时针旋转对本次飑线的形成和维持有很好的指示意义。(1)飑线发生前,高层渤海湾西侧出现水平涡度的逆时针旋转中心,并有较强的辐散配合,低层水平涡度为逆时针弯曲,为飑线产生提供了有利的上升运动条件。随后高层多个对流单体的水平涡度气旋式涡旋合并形成较大范围的气旋式涡旋结构,触发低层的上升运动,同时低层对流区前部形成一致的气旋式弯曲使得对流单体组织成带状结构,形成飑线。(2)飑线成熟时期高层水平涡度表现为统一大范围气旋式涡旋结构,低层则呈现典型的S型弯曲结构,水平涡度x方向的分量沿对流带从南至北表现为正负正,y方向的分量始终为正,并由对流带的中心向两侧减小,显示出水平涡度矢量旋转的方向对飑线影响的重要性。(3)由垂直涡度方程的分析得出,在飑线发展中期,MCV形成前,雷达反射率回波在500 hPa左右表现出明显的旋转,此时主要与500 hPa以上强的正涡度水平平流项及中层倾侧项和水平散度项有关,之后,在这几项的作用下使得中层风场产生气旋式旋转,形成MCV。   相似文献   

18.
我们采用无辐散正压数值模式,在无基本气流的条件下研究了热带气旋结构对其运动的一些作用。正如 DeMaria 先前所指出的,初始最大风速对涡旋轨迹影响甚微。与β效应相联系的涡旋移动十分敏感地依赖于离中心300至1000km 范围内的气流强度。如果此圆环内的气流气旋性加强,则涡旋轨迹也会气旋性地转向,在北半球其移动更偏向于西。通过分解出对称和不对称环流,我们讨论了β漂移的动力学。对称气流经历了最大风速稍微减弱和在600km 以外激发出一反气旋环流的过程。不对称环流由方位1波环流所支配,中心东侧有一反气旋环流圈,西侧有一气旋性环流圈,两环流圈之间有一近于均匀的,尺度较宽的通风气流。涡旋移动的速度和方向几乎等同于该通风气流在涡旋内有显著气旋性环流区域上的平均值。模式流函数趋势方程的分析证实,线性β项导致初始不对称环流圈的形成。对称涡旋气流平流不对称环流,这一非线性项使两环流圈之间的内部区域发生扭曲,并使通风气流的方向由向北演变成向西北。由于该项几乎与线性β强迫相平衡,所以流函数时间趋势(及涡旋移动)主要由通风气流平流对称涡旋这一项决定。  相似文献   

19.
利用多尺度天气分析理论,研究了锋面和气旋的形成机制.结果表明,冷、暖气团是由不同性质的亚微团在环境力的作用下向不同方向运动而形成的,而它们的交界面就是锋面.急流附近强动能梯度力能促进微团的分离,因此锋面与急流有很好的对应关系.另外,低空急流附近存在上干冷下暖湿的稳定气流,原因在于急流之上的能量梯度力与重力的方向相反,导致该区域微团所受到的作用力为零,形成稳定的结构.但当微团运动到急流出口处时,这种平衡不再存在,暖湿微团向上运动而干冷微团向下运动,形成剧烈的天气变化.地球自转所形成的离心力使得轻微团产生向北、向上的运动分量,导致极锋向北倾斜.气旋的形成同样是由亚微刚的分离而产生的.当轻微团离开微团,在绝对环境涡度场的作用下将发生旋转,旋转的方向与初始涡度的方向一致,在北半球地转涡度的垂直分量向上,为逆时针旋转,南半球为顺时针旋转.在气旋的形成过程中,轻亚微团在气压梯度力场和绝对涡度力的作用下呈现螺旋运动,是气旋系统普遍存在螺旋云带和雨带的原因.水汽是气旋在形成和加强过程中的基本能源,由于发生地的不同,温带气旋和台风在水汽输送方式上亦有差别:温带气旋主要依靠低空暖输送带进行水汽输送;台风因为发生在热带海洋,水汽充沛,各个层次都有水汽供应.气旋运动主要受三个力的制约:环境气压梯度场力、绝对涡度场力和环境涡度力,这三个力的作用导致台风在沿副热带高压边缘运动的同时,还存在蛇形路径和打转运动.  相似文献   

20.
双热带气旋相互作用的研究   总被引:7,自引:1,他引:6  
田永祥  寿绍文 《气象学报》1998,56(5):584-593
采用无基本气流的无辐散正压模式模拟了双热带气旋的运动。应用非对称理论研究了双热带气旋的相互作用。双热带气旋中的每个热带气旋主要由通过其中心的非对称气流(即通风气流)作用而移动。这股非对称气流是由其自身的线性和非线性效应产生的非对称涡旋与其配对热带气旋形成的非对称涡旋相叠加而引起的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号