首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sign-variable structure of sea surface temperature (SST) anomalies in the high, subtropical, and tropical latitudes of the North Atlantic under the North Atlantic Oscillation index (NAO) values NAO ≥ 1 and NAO ≤ ?1 is considered. A difference in cyclonic activity in winter under extreme values of the NAO is noted. The relation between the NAO anomalies in the areas with maximum cyclonic activity in the North Atlantic and some hydrometeorological quantities in the Crimea is analyzed. Preliminary estimates of the occurrence of a quasi-twenty-year cycle in the variability of processes determined by extreme values of the NAO are presented.  相似文献   

2.
In order to determine the response of the atmosphere to winter sea surface temperature (SST) anomalies in the North Atlantic area, we carried out ensemble runs of 20 years, forced with constant, perturbed, SST patterns using the climate version of the ARPèGE AGCM, at T42 resolution. A Monte Carlo technique was applied, in such a way that the control experiment, forced with observed climatological temperatures, and the four scenario experiments, forced with perturbed SSTs are equivalent to a length of 20 independent winters. Four anomalous winter North Atlantic sea surface temperature (SST) fields have been constructed by considering the observed SST variability in the main basins, namely the Labrador Sea and the Greenland Sea. Two patterns are of the `seesaw' type, while the two others have same the polarity in both basins. The patterns have been reinforced by a factor of 5–6 compared to presently observed multi-annual anomalies, in order to get SST anomalies which may have occurred during periods of the Little Ice Age. The differences between each of the four winter simulations with perturbed SSTs and the control run are analyzed in terms of tropospheric thickness, mean-sea-level pressure and storm activity. The `seesaw' type patterns give a weaker response in the tropospheric thickness fields than the two others. This is expected from simple considerations. In the mean circulation and synoptic activity, it appears that the Labrador Sea SST is important in determining the atmospheric response. This is probably due to enhanced temperature gradients east of New Foundland which enhances the storm activity. Received: 23 September 1998 / Accepted: 17 November 1999  相似文献   

3.
Sea ice plays an important role in the variability of the Labrador Sea especially in its most western part adjacent to an important region of deep convection. Winter-to-winter re-emergence and propagation of both sea-ice concentration (SIC) and sea surface temperature anomalies have been observed following years of high SIC in this region. They have potentially important links to water mass properties and freshwater and heat transports in the subpolar North Atlantic. This article builds on the results of two precursor papers and presents results from a coupled sea-ice–ocean model study of the interannual variability of sea ice in the Labrador Sea. The relationships between SIC and water column properties in the subpolar North Atlantic are assessed. Winters with high SIC and strong surface cooling are found to be conducive to intensified convection. Surface and mid-depth temperature and salinity anomalies are observed in the Labrador Sea and the northwestern North Atlantic during winters with anomalous Labrador Sea SIC. These anomalies are found to propagate along the major circulation patterns in the subpolar North Atlantic and to persist for up to three years.  相似文献   

4.
The effects of Atlantic water inflow on the climate variability in the Barents Sea are studied. Initial data are the series of water temperature at the Kola meridian cross-section, monthly values of ice extent, air temperature at the stations, sea level pressure from the reanalysis data, and sea surface temperature. The methods of multivariate correlation, spectral, and factor analysis and EOF decomposition are used. It was found that variations in the Atlantic water inflow define the main part of interannual variability of sea ice extent, water temperature, and air temperature in the Barents Sea in the cold season. The influence of regional atmospheric circulation on the interannual variability of these parameters is small. The effects that water temperature anomalies in the area of Newfoundland and in the equatorial part of the North Atlantic have on climate parameters in the Barents Sea are discovered. The response of these parameters lags behind the respective anomalies by 9-58 months. The high correlation between them makes it possible to develop the method of statistical forecasting of sea ice extent and water temperature in the Barents Sea with the lead time up to 4 years.  相似文献   

5.
Interdecadal climate variability in the subpolar North Atlantic   总被引:1,自引:0,他引:1  
The statistical relationships between various components of the subpolar North Atlantic air-sea-ice climate system are reexamined in order to investigate potential processes involved in interdecadal climate variability. It is found that sea surface temperature anomalies concentrated in the Labrador Sea region have a strong impact upon atmospheric sea level pressure anomalies over Greenland, which in turn influence the transport of freshwater and ice anomalies out of the Arctic Ocean, via Fram Strait. These freshwater and ice anomalies are advected around the subpolar gyre into the Labrador Sea affecting convection and the formation of Labrador Sea Water. This has an impact upon the transport of North Atlantic Current water into the subpolar gyre and thus, also upon sea surface temperatures in the region. An interdecadal negative feedback loop is therefore proposed as an internal source of climate variability within the subpolar North Atlantic. Through the lags associated with the correlations between different climatic components, observed horizontal advection time scales, and the use of Boolean delay equation models, the time scale for one cycle of this feedback loop is determined to have a period of about 21 years.  相似文献   

6.
A nonlinear projection of the tropical Pacific sea surface temperature anomalies (SSTA) onto the Northern Hemisphere winter sea level pressure (SLP) anomalies by neural networks (NN) was performed to investigate the nonlinear association between El Niño-Southern Oscillation (ENSO) and the Euro-Atlantic winter climate. While the linear impact of ENSO on the Euro-Atlantic winter SLP is weak, the NN projection reveals statistically significant SLP anomalies over the Euro-Atlantic sector during both extreme cold and warm ENSO episodes, suggesting that the Euro-Atlantic climate mainly responds to ENSO nonlinearly. The nonlinear response, mainly a quadratic response to the SSTA, reveals that regardless of the sign of the SSTA, positive SLP anomalies are found over the North Atlantic, stretching from eastern Canada to Europe (with anomaly center located just northwestward of Portugal), and negative anomalies centered over Scandinavia and Norwegian Sea, consistent with the excitation of the positive North Atlantic Oscillation pattern.  相似文献   

7.
The anomalous climatic variability of the Western Mediterranean in summer, its relationships with the large scale climatic teleconnection modes and its feedbacks from some of these modes are the targets of this study. The most important trait of this variability is the recurrence of warm and cold episodes, that take place at 2–4 year intervals, and which are monitored in the Western Mediterranean Index. We find that the Western Mediterranean events are part of a basin scale mode, and are related to the previous spring atmospheric anomalies. These anomalies are related mainly to the Pacific North America teleconnection pattern and the North Atlantic Oscillation, but also to a number of other climatic modes, connected with the previous two, as the Southern Oscillation, the Indian Core Monsoon and the Scandinavian teleconnection pattern. We identify the main spatial and temporal traits of the Western Mediterranean summer variability, the physical mechanisms at play in the generation of the events and their impacts. Considering the Atlantic Ocean, the Mediterranean events influence the sea surface temperature in the southeastern part of the North Atlantic Gyre. Additionally, they are significantly related to summer precipitation anomalies of the opposite sign in the Baltic basin (Central Germany and Poland) and near the Black Sea. We then estimate the mutual influence that the anomalous previous state of the Western Mediterranean, of the Pacific North America teleconnection pattern and of the North Atlantic Oscillation have on their summer conditions using a simple stochastic model. As the summer Western Mediterranean events have an influence on a part of the Baltic basin, we propose a second stochastic model in order to investigate if thereafter the Baltic basin variability will feedback on the Western Mediterranean sea surface temperature anomalies. Among the variables included in the second model are, in addition to the Western Mediterranean previous state, that of the Baltic Sea and of the Scandinavian teleconnection pattern. From each of the feedback matrices, a linear statistical analysis extracts spatial patterns whose evolution in time exhibits predictive capabilities for the Western Mediterranean evolution in summer and autumn that are above those of persistence, and that could be improved.  相似文献   

8.
The spatial and temporal relationships between sea surface temperature anomalies (SSTA) in the North Atlantic and the large-scale mid-troposphere circulation features in the Northern Hemisphere during the summer and the winter seasons are investigated. Results are based on atmospheric circulation indices (CI), introduced by Wallace and Gutzler for physical reasoning the low frequency atmospheric oscillations. Extreme levels and extreme situations in the mid-troposphere were defined and the SSTA composite charts were constructed with backward lags from 0 to 3 months. Analysis shows that several CI extreme phases of different signs are associated with synchronous and asynchronous SSTA composites of statistically separable types, or even antipodes, which may be interpreted as the intraseasonal influence of the ocean on the large-scale mid-troposphere anomaly features. Noteworthy is the role of the North Atlantic tropical zone in formation of ridges and blocking situations both in synchronous and asynchronous aspects. The North Atlantic SSTA relations to the West Atlantic Oscillation are shown to be significantly weaker that the same to the East Atlantic Oscillation.  相似文献   

9.
The display is considered of global processes in the ocean-atmosphere system in the variability of hydrophysical and hydrobiological fields of the northwestern part of the Black Sea in spring period of 1978–1995. It is demonstrated that the variability of North Atlantic and Southern oscillations in winter-spring period affects the spring hydrometeorological conditions in catchment areas of European rivers of the Black Sea basin causing the variability of runoff volumes of these rivers and the scales of spreading river waters at the northwestern shelf. Hydrological and hydrobiological characteristics of shelf waters varying in the process influence the formation of distribution of suspended matter content and transparency.  相似文献   

10.
Summary Separate predictive models are created for the Caribbean early wet season (May–June–July) and late wet season (August–September–October). Simple correlations are used to select predictors for a Caribbean rainfall index and predictive equations are formulated using multiple linear regression. The process is repeated after long term trends are removed from the Caribbean rainfall index and the models validated using a number of statistical methods. Four variables are confirmed as predictors for the early season: Caribbean sea surface temperature anomalies, tropical North Atlantic sea level pressure anomalies, vertical shear anomalies in the equatorial Atlantic, and the size of the Atlantic portion of the Western Hemisphere Warm Pool. Only the first two are retained in the late season model. On the interannual time-scale, equatorial Pacific sea surface temperature anomalies become significant in both seasons. The NINO3 index is retained among the predictors for the early season, and zonal gradients of sea surface temperature between the equatorial Pacific and tropical Atlantic are retained for the late season. The results also indicate spatial variation in the importance of the seasonal predictors.  相似文献   

11.
北极海冰变化的时间和空间型   总被引:14,自引:0,他引:14  
汪代维  杨修群 《气象学报》2002,60(2):129-138
利用 4 4a(195 1~ 1994年 )北极海冰密度逐月资料 ,分析提出了一种与北极冰自然季节变化相吻合的分季法 ,并根据这种分季法 ,使用EOF分解 ,揭示了北极各季海冰面积异常的特征空间型及其对应的时间变化尺度。结果表明 :(1)北极冰面积异常变化的关键区 ,冬季 (2~ 4月 )主要位于北大西洋一侧的格陵兰海、巴伦支海和戴维斯海峡以及北太平洋一侧的鄂霍次克海和白令海 ,夏季 (8~ 10月 )则主要限于从喀拉海、东西伯利亚海、楚科奇海到波佛特海的纬向带状区域内 ,格陵兰海和巴伦支海是北极海冰面积异常变化的最重要区域 ;(2 )春 (5~ 7月 )、秋 (11月~次年 1月 )季各主要海区海冰面积异常基本呈同相变化 ,夏季东西伯利亚海、楚科奇海、波佛特海一带海冰面积异常和喀拉海呈反相变化 ,而冬季巴伦支海、格陵兰海海冰面积异常和戴维斯海峡、拉布拉多海、白令海、鄂霍次克海的海冰变化呈反相变化 ;(3)北极冰总面积过去 4 4a来确实经历了一种趋势性的减少 ,并且叠加在这种趋势变化之上的是年代尺度变化 ,其中春季 (5~ 7月 )海冰面积异常变化对年平均北极冰总面积异常变化作出了主要贡献 ;(4)位于北太平洋一侧极冰面积异常型基本具有半年的持续性 ,而位于北大西洋一侧极冰面积异常型具有半年至一年的持续性  相似文献   

12.
刘莉  张文君  刘超 《气象学报》2023,81(1):137-151
基于哈得来中心(Hadley Centre)逐月的海表温度、海冰密集度资料以及美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)的大气环流再分析资料,分析了1950—2020年秋季(8—10月)东西伯利亚—波弗特海(East Siberian-Beaufort,EsCB)海冰年代际变化的时空特征,并阐述了大西洋多年代际振荡(Atlantic Multidecadal Oscillation,AMO)对EsCB海冰年代际变率的可能调制作用。结果表明,EsCB是秋季北极海冰年代际变化最主要的区域,该区海冰密集度年代际变率可占其异常总方差的40%以上。进一步研究发现,AMO对秋季EsCB海冰存在明显的调制作用,在AMO正位相,北大西洋正海温异常激发向极传播的大气罗斯贝波列,有利于北极中部出现高压异常,相应的大气绝热下沉运动使得对流层低层出现明显的升温,从而有利于EsCB海冰的融化。与此同时,地表升温和EsCB海冰消融会引起局地云量的增多、大气向下长波辐射增大,这反过来又使得地表气温升高,这种地表气温-云-长波辐射的正反馈过程有利于年代际海冰信号的长时间维持。耦合模式的北大西洋“起搏...  相似文献   

13.
利用1961—2015年Hadley中心逐月海表温度资料、海冰密集度资料以及NCEP/NCAR再分析资料,探讨了秋季北极海冰对于EP型ENSO事件的异常响应,并进一步研究了这种异常响应的可能原因。结果表明,秋季北极海冰对EP型ENSO的响应具有非线性,特别是喀拉海海域(60°~90°E,70°~80°N)海冰无论在EP型El Ni?o或是La Ni?a位相,均表现为显著的负异常。进一步研究发现,不同ENSO位相造成该区域海冰异常偏少的机制有明显不同。EP型El Ni?o年秋季菲律宾附近海域对流活动被抑制,所激发的经向波列在高纬地区形成异常反气旋环流,其南风分量向喀拉海输送暖平流,造成海冰异常偏少。而EP型La Ni?a年喀拉海海域则主要受到来自大西洋开放性海域西风异常的影响,合成结果和个例年均显示EP型La Ni?a年秋季北大西洋上空存在一个显著的西风急流中心,有利于北大西洋开放性海域较暖海水向下游输送,进而影响喀拉海海冰。这些结果表明,热带外地区大气环流场对EP型ENSO的非线性响应导致了喀拉海海冰对EP型ENSO事件的响应也表现出明显的非线性。  相似文献   

14.
Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land–sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.  相似文献   

15.
In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon(EAWM)by analyzing a four-member ensemble of 600-year simulations performed with Had CM3(Hadley Centre Coupled Model,version 3). We find that the EAWM is strengthened when total solar irradiance(TSI) increases on the multidecadal time scale. The model results indicate that positive TSI anomalies can result in the weakening of Atlantic meridional overturning circulation, causing negative sea surface temperature(SST) anomalies in the North Atlantic. Especially for the subtropical North Atlantic, the negative SST anomalies can excite an anomalous Rossby wave train that moves from the subtropical North Atlantic to the Greenland Sea and finally to Siberia. In this process, the positive sea-ice feedback over the Greenland Sea further enhances the Rossby wave. The wave train can reach the Siberian region, and strengthen the Siberian high. As a result, low-level East Asian winter circulation is strengthened and the surface air temperature in East Asia decreases. Overall,when solar forcing is stronger on the multidecadal time scale, the EAWM is typically stronger than normal. Finally, a similar linkage can be observed between the EAWM and solar forcing during the period 1850–1970.  相似文献   

16.
The role of winter sea-ice in the Labrador Sea as a precursor for precipitation anomalies over southeastern North America and Western Europe in the following spring is investigated. In general terms, as the sea ice increases, the precipitation also increases. In more detail, however, analyses indicate that both the winter sea-ice and the sea surface temperature(SST)anomalies related to increases in winter sea-ice in the Labrador Sea can persist into the following spring. These features play a forcing role in the spring atmosphere, which may be the physical mechanism behind the observational relationship between the winter sea-ice and spring precipitation anomalies. The oceanic forcings in spring include Arctic sea-ice anomalies and SST anomalies in the tropical Pacific and high-latitude North Atlantic. Multi-model Coupled Model Intercomparison Project Phase 5 and Atmospheric Model Intercomparison Project simulation results show that the atmospheric circulation response to the combination of sea-ice and SST is similar to that observed, which suggests that the oceanic forcings are indeed the physical reason for the enhanced spring precipitation. Sensitivity experiments conducted using an atmospheric general circulation model indicate that the increases in precipitation over southeastern North America are mainly attributable to the effect of the SST anomalies, while the increases over Western Europe are mainly due to the sea-ice anomalies. Although model simulations reveal that the SST anomalies play the primary role in the precipitation anomalies over southeastern North America, the observational statistical analyses indicate that the area of sea-ice in the Labrador Sea seems to be the precursor that best predicts the spring precipitation anomaly.  相似文献   

17.
Interannual to multidecadal modes in ocean/atmosphere dynamics in the North Atlantic region have been identified using sea salt aerosol proxy records from northern Greenland ice cores over the last 1,000 years. Sea salt concentrations show a consistent relationship with anomalies in the meridional pressure gradient over the North Atlantic region over all considered time scales. These pressure anomalies are connected to shifts in storm tracks, leading to lower pressure and higher storm activity, hence, higher sea salt export over the Greenland ice sheet. Two modes of long-term variability with a period of 10.4 years and 62 years could be identified. The latter is connected to long-term changes in sea surface temperature (SST) as documented by a high correlation of North Atlantic SST with our sea salt record over the last 150 years. Long-term reconstruction of these modes shows that the 10.4-year cycle has been a phenomenon persistent over the last millennium while the 62-year cycle has been mainly active after 1700. Accordingly, the longer-term persistence of this multidecadal variability in sea salt points also to significant variations in SST over the last 300 years.  相似文献   

18.
A maximum of easterly zonal wind at 925 hPa in the Caribbean region is called the Caribbean Low-Level Jet (CLLJ). Observations show that the easterly CLLJ varies semi-annually, with two maxima in the summer and winter and two minima in the fall and spring. Associated with the summertime strong CLLJ are a maximum of sea level pressure (SLP), a relative minimum of rainfall (the mid-summer drought), and a minimum of tropical cyclogenesis in July in the Caribbean Sea. It is found that both the meridional gradients of sea surface temperature (SST) and SLP show a semi-annual feature, consistent with the semi-annual variation of the CLLJ. The CLLJ anomalies vary with the Caribbean SLP anomalies that are connected to the variation of the North Atlantic Subtropical High (NASH). In association with the cold (warm) Caribbean SST anomalies, the atmosphere shows the high (low) SLP anomalies near the Caribbean region that are consistent with the anomalously strong (weak) easterly CLLJ. The CLLJ is also remotely related to the SST anomalies in the Pacific and Atlantic, reflecting that these SST variations affect the NASH. During the winter, warm (cold) SST anomalies in the tropical Pacific correspond to a weak (strong) easterly CLLJ. However, this relationship is reversed during the summer. This is because the effects of ENSO on the NASH are opposite during the winter and summer. The CLLJ varies in phase with the North Atlantic Oscillation (NAO) since a strong (weak) NASH is associated with a strengthening (weakening) of both the CLLJ and the NAO. The CLLJ is positively correlated with the 925-hPa meridional wind anomalies from the ocean to the United States via the Gulf of Mexico. Thus, the CLLJ and the meridional wind carry moisture from the ocean to the central United States, usually resulting in an opposite (or dipole) rainfall pattern in the tropical North Atlantic Ocean and Atlantic warm pool versus the central United States.  相似文献   

19.
基于美国大气研究中心的CCSM3(Community Climate System Model version3)模式,对淡水扰动试验中不同热盐环流(thermohline circulation,THC)平均强度下,北大西洋气候响应的差异进行研究。结果表明:1)在不同平均强度下,北大西洋海洋、大气要素的气候态差异显著。相对于高平均强度,在低平均强度下,北大西洋地区海表温度(sea surface temperature,SST)、海表盐度(sea surface salinity,SSS)、海表密度(sea surface density,SSD)、表面气温(surface air temperature)异常减弱,最大负异常位于GIN(Greenland sea--Iceland sea--Norwegiansea)海域;海平面气压(sealev—elpressure,SLP)异常升高,相应于北大西洋海域降温,表现为异常冷性高压的响应特征;海冰分布区域向南扩大;北大西洋西部热带海域降水减少,导致热带辐合带(intertropical convergence zone,ITCZ)南移。2)在不同THC平均强度下,SST、SSS和SSD年际异常最显著的区域不同;在高平均强度下,最显著区域位于GIN海域,而在低平均强度下则位于拉布拉多海海域。3)在高平均强度下,北大西洋SST主导变率模态的变率极大区域位于GIN海,而在低平均强度下该极大区域不存在;北大西洋SLP的主导变率模态表现为类NAO型,但在高平均强度下,类NAO型表现得更明显。  相似文献   

20.
南极海冰首要模态呈现偶极子型异常,正负异常中心分别位于别林斯高晋海/阿蒙森海和威德尔海。过去研究表明冬春季节南极海冰涛动异常对后期南极涛动(Antarctic Oscillation,AAO)型大气环流有显著影响,而AAO可以通过经向遥相关等机制影响北半球大气环流和东亚气候。本文中我们利用观测分析发现南极海冰涛动从5~7月(May–July,MJJ)到8~10月(August–October, ASO)有很好的持续性,并进一步分析其对北半球夏季大气环流的可能影响及其物理过程。结果表明,MJJ南极海冰涛动首先通过冰气相互作用在南半球激发持续性的AAO型大气环流异常,使得南半球中纬度和极地及热带之间的气压梯度加大,在MJJ至JAS,纬向平均纬向风呈现显著的正负相间的从南极到北极的经向遥相关型分布。对流层中层位势高度场上,在澳大利亚北部到海洋性大陆区域,出现显著的负异常,在东亚沿岸从低纬到高纬呈现南北走向的“? + ?”太平洋—日本(Pacific–Japan,PJ)遥相关波列,其对应赤道中部太平洋及赤道印度洋存在显著的降水和海温负异常,西北太平洋至我国东部沿海地区存在显著降水正异常和温度负异常;低纬度北美洲到大西洋一带存在的负位势高度异常和北大西洋附近存在的正位势高度异常中心,构成一个类似于西大西洋型遥相关(Western Atlantic,WA)的结构,对应赤道南大西洋降水增加和南撒哈拉地区降水减少。从物理过程来看,南极海冰涛动首先通过局地效应影响Ferrel环流,进而通过经圈环流调整使得海洋性大陆区域和热带大西洋上方的Hadley环流上升支得到增强,海洋性大陆区域特别是菲律宾附近的热带对流活动偏强,激发类似于负位相的PJ波列,影响东亚北太平洋地区的大气环流,而热带大西洋对流增强和北传特征,则通过激发WA遥相关影响大西洋和欧洲地区的大气环流。以上两种通道将持续性MJJ至ASO南极海冰涛动强迫的大气环流信号从南半球中高纬度经热带地区传递到北半球中高纬地区,从而对热带和北半球夏季大气环流产生显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号