首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new means of incorporating radiative transfer into smoothed particle hydrodynamics (SPH) is introduced, which builds on the success of two previous methods – the polytropic cooling approximation as devised by Stamatellos et al. and flux-limited diffusion. This hybrid method preserves the strengths of its individual components, while removing the need for atmosphere matching or other boundary conditions to marry optically thick and optically thin regions. The code uses a non-trivial equation of state to calculate temperatures and opacities of SPH particles, which captures the effects of H2 dissociation, H0 ionization, He0 and He+ ionization, ice evaporation, dust sublimation, molecular absorption, bound-free and free–free transitions and electron scattering. The method is tested in several scenarios, including (i) the evolution of a  0.07 M  protoplanetary disc surrounding a  0.5 M  star; (ii) the collapse of a  1 M  protostellar cloud and (iii) the thermal relaxation of temperature fluctuations in a static homogeneous sphere.  相似文献   

2.
3.
4.
5.
We derive analytically the Jeans criterion for a gas simulated using an SPH code in which the number of neighbours N neighb is held constant (approximately) and the gravity-softening length, ε, equals the smoothing length, h (approximately). We show that the Jeans criterion is reproduced accurately for resolved structures, i.e. those represented by >  N neighb particles. Unresolved structures are stabilized, as long as (i) the smoothing kernel W ( u ) is sufficiently centrally peaked, and (ii) the Jeans mass is resolved. Provided that these conditions are satisfied, then, in simulations of the formation of stars and galaxies, any fragmentation that occurs should be both physical and resolved. In particular there should be no creation of sub-Jeans condensations owing to numerical instability.  相似文献   

6.
Ionizing radiation in smoothed particle hydrodynamics   总被引:1,自引:0,他引:1  
A new method for the inclusion of ionizing radiation from uniform radiation fields into 3D smoothed particle hydrodynamics (SPHI) simulations is presented. We calculate the optical depth for the Lyman continuum radiation from the source towards the SPHI particles by ray-tracing integration. The time-dependent ionization rate equation is then solved locally for the particles within the ionizing radiation field. Using test calculations, we explore the numerical behaviour of the code with respect to the implementation of the time-dependent ionization rate equation. We also test the coupling of the heating caused by the ionization to the hydrodynamical part of the SPHI code.  相似文献   

7.
8.
In smoothed particle hydrodynamics (SPH) codes with a large number of particles, star formation as well as gas and metal restitution from dying stars can be treated statistically. This approach allows one to include detailed chemical evolution and gas re-ejection with minor computational effort. Here we report on a new statistical algorithm for star formation and chemical evolution, especially conceived for SPH simulations with large numbers of particles, and for parallel SPH codes.
For the sake of illustration, we also present two astrophysical simulations obtained with this algorithm, implemented into the Tree-SPH code by Lia & Carraro .
In the first simulation, we follow the formation of an individual disc-like galaxy, predict the final structure and metallicity evolution, and test resolution effects. In the second simulation we simulate the formation and evolution of a cluster of galaxies, to demonstrate the capabilities of the algorithm in investigating the chemo-dynamical evolution of galaxies and of the intergalactic medium in a cosmological context.  相似文献   

9.
To measure the onset of mass transfer in eccentric binaries, we have developed a two-phase smoothed particle hydrodynamics (SPH) technique. Mass transfer is important in the evolution of close binaries, and a key issue is to determine the separation at which mass transfer begins. The circular case is well understood and can be treated through the use of the Roche formalism. To treat the eccentric case, we use a newly developed two-phase system. The body of the donor star is made up from high-mass water particles, whilst the atmosphere is modelled with low-mass oil particles. Both sets of particles take part fully in SPH interactions. To test the technique, we model circular mass-transfer binaries containing a  0.6 M  donor star and a  1 M  white dwarf; such binaries are thought to form cataclysmic variable (CV) systems. We find that we can reproduce a reasonable CV mass-transfer rate, and that our extended atmosphere gives a separation that is too large by approximately 16 per cent, although its pressure scale height is considerably exaggerated. We use the technique to measure the semimajor axis required for the onset of mass transfer in binaries with a mass ratio of   q = 0.6  and a range of eccentricities. Comparing to the value obtained by considering the instantaneous Roche lobe at pericentre, we find that the radius of the star required for mass transfer to begin decreases systematically with increasing eccentricity.  相似文献   

10.
11.
12.
It is believed that protostellar accretion disks are formed from nearly ballistic infall of molecular matter in rotating core collapse. Collisions of this infalling matter leads to formation of strong supersonic shocks, which if they cool rapidly, result in accumulation of that material in a thin structure in the equatorial plane. Here, we investigate the relaxation time of the protostellar accretion post‐shock gas using the smoothed particle hydrodynamics (SPH). For this purpose, a one‐dimensional head‐on collision of two molecular sheets is considered, and the time evolution of the temperature and density of the post‐shock region simulated. The results show that in strong supersonic shocks, the temperature of the post‐shock gas quickly increases proportional to square of the Mach number, and then gradually decreases according to the cooling processes. Using a suitable cooling function shows that in appropriate time‐scale, the center of the collision, which is at the equatorial plane of the core, is converted to a thin dense molecular disk, together with atomic and ionized gases around it. This structure for accretion disks may justify the suitable conditions for grain growth and formation of proto‐planetary entities (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
15.
16.
The axisymmetric form of the hydrodynamic equations within the smoothed particle hydrodynamics (SPH) formalism is presented and checked using idealized scenarios taken from astrophysics (free fall collapse, implosion and further pulsation of a Sun-like star), gas dynamics (wall heating problem, collision of two streams of gas) and inertial confinement fusion (ablative implosion of a small capsule). New material concerning the standard SPH formalism is given. That includes the numerical handling of those mass points which move close to the singularity axis, more accurate expressions for the artificial viscosity and the heat conduction term and an easy way to incorporate self-gravity in the simulations. The algorithm developed to compute gravity does not rely in any sort of grid, leading to a numerical scheme totally compatible with the Lagrangian nature of the SPH equations.  相似文献   

17.
Class 0 objects, which are thought to be the youngest protostars, are identified in terms of NIR or radio emission and/or the presence of molecular outflows. We present combined hydrodynamic and radiative transfer simulations of the collapse of a star‐forming molecular core, which suggest two criteria for identifying dense cores with deeply embedded very young protostars that may not be observable in the NIR or radio with current telescopes. We find that cores with protostars are relatively warm (T > 15 K) with their SEDs peaking at wavelengths <170 µm, and they tend to appear circular. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号