首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural observations carried out on the volcanic Island of Pantelleria show that the tectonic setting is dominated by NNE trending normal faults and by NW-striking right-lateral strike-slip faults with normal component of motion controlled by a ≈N 100°E oriented extension. This mode of deformation also controls the development of the eruptive fissures, dykes and eruptive centres along NNE–SSW belts that may thus represent the surface response to crustal cracking with associated magma intrusions. Magmatic intrusions are also responsible for the impressive vertical deformations that affect during the Late Quaternary the south-eastern segment of the island and producing a large dome within the Pantelleria caldera complex. The results of the structural analysis carried out on the Island of Pantelleria also improves the general knowledge on the Late Quaternary tectonics of the entire Sicily Channel. ESE–WNW directed extension, responsible for both the tectonic and volcano-tectonic features of the Pantelleria Island, also characterizes, at a greater scale, the entire channel as shown by available geodetic and seismological data. This mode of extension reactivates the older NW–SE trending fault segments bounding the tectonic troughs of the Channel as right-lateral strike-slip faults and produces new NNE trending pure extensional features (normal faulting and cracking) that preferentially develop at the tip of the major strike-slip fault zones. We thus relate the Late Quaternary volcanism of the Pelagian Block magmatism to dilatational strain on the NNE-striking extensional features that develop on the pre-existing stretched area and propagate throughout the entire continental crust linking the already up-welled mantle with the surface.  相似文献   

2.
Original geological and structural data, which derive from the analysis of the rheomorphic Green Tuff ignimbrite unit of Pantelleria, have offered the opportunity to define its modes of emplacement and the location of the eruptive sources in terms of distribution and geometry. The Green Tuff displays a wide range of rheomorphic structures consisting of preserved penetrative foliations, lineations and folds which, developed at distinct times, have been assigned to three major (D1–D3) deformation events accompanying and following the ignimbrite unit emplacement. The first D1 event produced distinct sets of structures developed along ductile shear zones generated during the emplacement of pyroclastic density currents along current-deposit boundaries. Palaeoflow directions of this event are completely independent from topography and are directly related to high-energy currents generated from the eruption. D2 event is characterized by folding due to down-slope post-emplacement flows related to gravity sliding processes whereas the D3 event was dominated by semi-brittle to brittle structures developed after the complete emplacement of the flow units and their subsequent cooling and compaction. The statistical analysis of these structural data has led to the hypothesis that the Green Tuff eruption developed from fissural sources that are largely superimposed on the NNE-trending dip-slip normal fault zones of the island (the Zinedi and the Montagna Grande faults). Our model also implies that the Green Tuff ignimbrite deposit can be the result of several events within a single eruptive cycle. The orientation of the fissural eruptive systems is evidence that the feeding structures for this large-size explosive event were strongly controlled by the E-W to ESE-WNW directed extension structures that affect the island of Pantelleria and, as a whole, the entire region of the Sicily Channel.  相似文献   

3.
Six silicic eruptive cycles have been recognized in the last 50 ka at Pantelleria. The products of each cycle exhibit a compositional variation from pantellerite to less peralkaline rhyolite or to trachyte. The relationships between the range of chemical variation, the erupted volume and the time of eruptions, allow us to estimate an average differentiation rate of 5% crystal fractionation per 1000 years and a constant long-term rate of magma discharge of 0.1 km3 per 1000 years. Pressure increase in the magma chamber caused by the addition of new magma, accumulation of highly-differentiated, volatile-rich magma in the roof zone and a concomitant build-up of a vapour phase, is postulated as a possible triggering mechanism for eruptions.  相似文献   

4.
A geological and a geophysical survey have been carried out at Ponza Island, Tyrrhenian sea, Italy. Geological and structural data allowed to identify three main tectonic systems: NW-SE, NE-SW and E-W trending. The first one is related to a pre-volcanic tectonic event, probably linked to the Pliocene extensional activity of the Tyrrhenian evolution; the other two systems affected the volcanic units in two different stages of the Lower Pleistocene, the earlier one after the rhyolitic hyaloclastic formation (HF) emplacement and the later one after the emplacement of older trachytic pyroclastic deposits (Lower Pyroclastic Units—LPU). The latter event was followed by the emersion of the whole Ponza area, as testified by a marked erosional surface and marine terrace deposits cropping out at the top of LPU. The Upper Pyroclastic Units (UPU) represent the younger trachytic activity of the island (1.3 Myr) and do not show evidence of tectonic activity.The NW-SE-trending tectonic system probably assisted the rhyolitic magma rise, while the NE-SW- and E-W-trending systems mainly assisted the trachytic magma rise, responsible for the explosive and effusive activity in the southern area and for the hydrothermal fluids that caused alteration processes in the northern area.A 161-station gravimetric survey was carried out on the island and surrounding islets. The geological data and the gravimetric survey have been used to propose a 2.5 D model in which rhyolitic hyaloclastic deposits (ρ = 1.7 g cm−3) overlay an articulated Meso-Cenozoic sedimentary substratum (ρ = 2.6 g cm−3) laying at a depth to 300 m below sea level. Both formations are crossed by rhyolitic dykes (ρ = 2.4 g cm−3) which mark feeder fractures. In the M. Guardia area, where a maximum is present, this model accounts for the presence of a horst of the rigid basement, a shallow trachytic lava flow and its feeder (ρ = 2.8 g cm−3).  相似文献   

5.
6.
We report on the paleomagnetism of ten sites in the products of the most recent silicic eruptive cycle of Pantelleria, Strait of Sicily. Previously radiometrically dated at 5–10 ka, our comparison with proxies for geomagnetic field directions allows us to narrow considerably the time window during which these eruptions occurred. The strongly peralkaline composition causes the magmas to have low viscosities, locally resulting in strong agglutination of proximal fall deposits. This allows successful extraction of paleomagnetic directions from the explosive phases of eruptions. One of our sites was located in the Serra della Fastuca fall deposit, produced by the first explosive event of the eruptive cycle. The other nine sites were located in the most recent explosive (pumice fall and agglutinate from Cuddia del Gallo and Cuddia Randazzo) and effusive (Khaggiar lava) products. The (very similar) paleomagnetic directions gathered from eight internally consistent sites were compared to reference geomagnetic field directions of the last 5–10 ka. Directions from Cuddia del Gallo agglutinate and Khaggiar flows translate into 5.9- to 6.2-ka ages, whereas the Fastuca pumices yield a slightly older age of 6.2–6.8 ka. Hence, the most recent silicic eruptive cycle lasted at most a millennium and as little as a few centuries around 6.0 ka. Paleomagnetically inferred ages are in good agreement with published (and calibrated by us) 14C dates from paleosols/charcoals sampled below the studied volcanic units, whereas K/Ar data are more scattered and yield ∼30% older ages. Our data show that the time elapsed since the most recent silicic eruptions at Pantelleria is comparable to the quiescence period separating the two latest volcanic cycles.  相似文献   

7.
The attenuation of P- and S-waves in Southeastern Sicily was estimated by applying two different methods in time and frequency domains. We analyzed waveforms from about 290 local events (0.6≤ML≤4.6) recorded at a three-component digital network.By applying the pulse broadening method to the first P-wave pulse, we found an average Qp value of ca. 140. The application of the frequency decay method provided a Qp value of ca. 120, in the low-frequency band (3-9 Hz). Conversely, in the high frequency range (16-27 Hz) the average Qp is significantly larger (ca. 640). The frequency decay method was also applied to S-waves spectra. In the low frequency range (2-5 Hz) the estimated average Qs is ca. 190. As for Qp, also Qs, in the high frequency range (16-27 Hz), is larger (ca. 700). These results evidenced a frequency dependence of both the quality factors Qp and Qs, as commonly observed in tectonically active zones characterized by high degree of heterogeneity.  相似文献   

8.
Crustal tectonic seismicity on Stromboli is here discussed along with the regional tectonic and geodynamic context of the Aeolian archipelago, Italy. The aim of this paper is to contribute to the reduction of the crucial gap in information concerning the tectonic activity originating at the volcano Stromboli in the last decade. It is indeed well known that Strombolian eruptions, related to the persistent state of activity on this volcano, allow a fast collection of seismic data which are mainly represented by explosion quakes and tremor. However, only some sporadic information concerns tectonic earthquakes due to their low occurrence rate. A catalog of 150 crustal tectonic earthquakes recorded at Stromboli from 1985 to 1996 is presented here. The analyses of the seismograms were carried out on the basis of the records of the station STR, located in the southwestern part of the island. The magnitude considered ranged from 1.5 to 3.7. Hypocentral location indicates foci at less than 12 km, although for the majority of the earthquakes, which are not recorded at the seismic stations deployed on the other islands of the Aeolian archipelago, a shallower (within a few kilometers) depth can be hypothesized. The strain release associated with the 150 tectonic earthquakes of our catalog was also evaluated. The low levels of occurrence and seismic energy release reached throughout the ca. twelve years analyzed here confirm the minor role played by processes of brittle failure of rocks. This aspect of seismic activity is nevertheless important as it can provide a contribution to the knowledge of the dynamics of this volcano. The focal mechanisms available, integrated with data from the literature, show the T-axes oriented about NE–SW and NW–SE. These findings are consistent with the deformative and tectonic characteristics of this volcanic edifice and of the Aeolian archipelago, which shows the same two directions of extension. This is in agreement with subduction, which is very old or which passively evolves towards the final stages, and is controlled by the transform activity of the Aeolian–Tindari–Giardini fault system.  相似文献   

9.
Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50 ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, ~ 20 ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, ~ 6 ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions.The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6 wt.% H2O, several hundred ppm of CO2, 1600–2000 ppm of sulphur and 500–900 ppm of chlorine. The water–carbon dioxide couple gives a confining pressure ~ 2 kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4 wt.% H2O, 8700 ppm Cl, 6000 ppm F, and CO2 below the detection limit. Sulphur averaging 420 ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of ~ 1 kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event.  相似文献   

10.
Integrated geological, geodetic and marine geophysical data provide evidence of active deformation in south-western Sicily, in an area spatially coincident with the macroseismic zone of the destructive 1968 Belice earthquake sequence. Even though the sequence represents the strongest seismic event recorded in Western Sicily in historical times, focal solutions provided by different authors are inconclusive on possible faulting mechanism, which ranges from thrusting to transpression, and the seismogenic source is still undefined. Interferometric (DInSAR) observations reveal a differential ground motion on a SW–NE alignment between Campobello di Mazara and Castelvetrano (CCA), located just west of the maximum macroseismic sector. In addition, new GPS campaign-mode data acquired across the CCA alignment documents NW–SE contractional strain accumulation. Morphostructural analysis allowed to associate the alignment detected through geodetic measurements with a topographic offset of Pleistocene marine sediments. The on-land data were complemented by new high-resolution marine geophysical surveys, which indicate recent contraction on the offshore extension of the CCA alignment. The discovery of archaeological remains displaced by a thrust fault associated with the alignment provided the first likely surface evidence of coseismic and/or aseismic deformation related to a seismogenic source in the area. Results of the integrated study supports the contention that oblique thrusting and folding in response to NW–SE oriented contraction is still active. Although we are not able to associate the CCA alignment to the 1968 seismic sequence or to the historical earthquakes that destroyed the ancient Greek city of Selinunte, located on the nearby coastline, our result must be incorporated in the seismic hazard evaluation of this densely populated area of Sicily.  相似文献   

11.
The Onano explosive eruption of the Latera Volcanic Complex (Vulsini Volcanoes, Quaternary potassic Roman Comagmatic Region, Italy) provides an interesting example of multiple changes of eruptive style that were concomitant with a late phase of collapse of the polygenetic Latera Caldera. This paper reports a reconstruction of the event based on field analysis, laboratory studies of grain size and density of juvenile clasts, and re-interpretation of available subsurface geology data. The Onano eruption took place in a structurally weak area, corresponding to a carbonate substrate high bordered by the pre-existing Latera caldera and Bolsena volcano-tectonic depression, which controlled the ascent and eruption of a shoshonitic-phonotephritic magma through intersecting rim fault systems. Temporal changes of magma vesiculation, fragmentation and discharge rate, and consequent eruptive dynamics, were strongly controlled by pressure evolution in the magma chamber and changing vent geometry. Initially, pumice-rich pyroclastic flows were emplaced, followed by spatter- and lithic-rich flows and fallout from energetic fire-fountaining. The decline of magma pressure due to the partial evacuation of the magma chamber induced trapdoor collapse of the chamber roof, which involved part of the pre-existing caldera and external volcano slopes and eventually led to the present-day caldera. The widening of the vent system and the emplacement of the main pyroclastic flow and associated co-ignimbrite lag breccia marked the eruption climax. A sudden drop of the confining pressure, which is attributed to a pseudo-rigid behaviour of the magma chamber wall rocks during a phase of rapid magma drainage, led to extensive magma vesiculation and fragmentation. The disruption of the magma chamber roof and waning magma pressure in the late eruption stage favoured the explosive interaction of residual magma with groundwater from the confined carbonate aquifer. Pulsating hydrostatic and magma pressures produced alternating hydromagmatic pyroclastic surges, strombolian fallout and spatter flows.  相似文献   

12.
A comparison of the most used magnitude-intensity relations is carried out, with reference to a spatial window coinciding with Calabria and northeastern Sicily, evaluating their consistency with different data sets taken from several catalogues. M values indicated in the catalogues and the corresponding average value have been used choosing the relation to be adopted on the basis of the level of their adaptability to points, rather than prearranged models.  相似文献   

13.
The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important for the use of gravity data especially, when computing geoid models in coastal regions.The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based on collocation, are investigated in this paper. Collocation offers a way of combining the individual airborne gravity observation with either the residual geoid observations derived from satellite altimetry or with gravity derived from these data using the inverse Stokes method implemented by Fast Fourier Transform (FFT).  相似文献   

14.
15.
The geomorphological and morphometric analysis of the sea floor topography surrounding the Aeolian Islands, South Tyrrhenian Sea, Italy, provides insights into the relationships between the volcanological evolution of the islands and their tectonic features. We constructed geomorphological maps of the submarine portions of the seven large edifices constituting the islands on the basis of a DEM with a 5 m resolution step. These maps include constructional and destructional landforms such as submarine volcanic vents located west of Lipari and north of Alicudi, and hummocky surfaces recognised north of Lipari and Salina. The latter landforms, together with the occurrence of large scars affecting the main edifices on land, suggest that sector collapses affected some islands. Geomorphological data indicate that the location of subaerial and submarine vents is strongly controlled by local tectonic structures striking WNW-ESE (Alicudi-Filicudi sector), NNW-SSE (Salina-Lipari-Vulcano sector) and NE-SW (Panarea-Stromboli sector). The islands can be divided into two groups on the basis of some morphometric parameters: a first group with a pancake-like shape, Dp/D (abrasion platform diameter/basal diameter) higher than 0.40 and H/D (total height/basal diameter) lower than 0.13, and a second group with a conical shape, characterised by Dp/D lower than 0.34 and H/D higher than 0.14. These ratios and other morphometric parameters reflect the different volcanological and structural evolution of the Aeolian Islands. The pancake-like shaped complexes have been created, in addition to their submarine stage, by extrusive and highly explosive activity, whereas the cone-shaped edifices have been characterised by effusive or moderate explosive activity.Editorial responsibility: C Kilburn  相似文献   

16.
Concentrations of major ions and the δ13C composition of dissolved inorganic carbon in groundwater and submarine groundwater discharges in the area between Siracusa and Ragusa provinces, southeastern Sicily, representing coastal carbonate aquifers, are presented and discussed. Most of groundwater analysed belongs to calcium bicarbonate type, in agreement with the geological nature of carbonate host rocks. Carbonate groundwater acquires, besides the dissolution of carbonate minerals, dissolved carbon (and the relative isotopic composition) from the atmosphere and from soil biological activity. In fact, δ13C values and total dissolved inorganic carbon contents show that both these sources contribute to carbon dissolved species in the waters studied. Finally, mixing with seawater in the second main factor of groundwater mineralization Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A recent investigation on the northern margin of the Hyblean Plateau in south-eastern Sicily highlights the occurrence of a clayey diapiric intrusion into the foreland carbonate series. The piercing body, exposed along a ∼270 long and ∼30 m deep NE-SW elongated quarry, consists of serpentinite-bearing clayey material. As suggested by the internal contractional features and by its geometric relations with the adjacent rocks, the clayey body intruded in the foreland series producing on its flanks a set of domino-arranged normal faults which nucleated as a result of gravitative collapse. Taking into account previous petrological studies, which provided information about the origin of the mud, a deep geodynamic model for the northern part of the Hyblean Plateau is here presented. The mud diapirs originated from the uprising of pre-existing serpentinite bodies and others products of alteration probably developed along an ancient ridge-transform intersection where a hydrothermally altered mantle wedge occurred. This interpretation is supported by seismic, magnetic and gravimetric anomalies beneath the analyzed area and has implications on its geodynamic evolution.  相似文献   

18.
A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.  相似文献   

19.
Gravity and magnetic data for the volcanic island of Ischia, Naples, Italy, have been analyzed and interpreted in light of recent geological and volcanological data to define a model of the island's shallow and deep structures. From the interpretation of the gravity data it appears that the shallow structures consist of pyroclastic material (p=2.0 g/cm3). Within these pyroclastics there are domes and lava flows of higher density and eruptive centres filled with lower density material. The basement is a “horst” with the shallowest depth at about 1.0 km, south of the centre of the island, if we assign a density contrast of 0.5 g/cm3 relative to the above pyroclastics.Interpretation of magnetic data measured at 725 stations showed that the basement derived from the gravity interpretation is magnetized. Moreover, this basement is less magnetized on the western side of Ischia which may be caused by the anomalous thermal state of the area, as indicated by surface fumaroles, hot springs etc. and temperature measurements in deep drillings.  相似文献   

20.
The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma–Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K–Ar geochronological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号