首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Waldmeier 《Solar physics》1981,70(2):251-258
The extension of the polar coronal holes has been studied for four cycles (1940–1978), using the observations of the corona line 530.3 nm. For about 7 years of each cycle, including sunspot minimum, the polar hole exists permanently and has a diameter of about 40° or even more. For about 3 years around sunspot maximum no polar hole does exist (Figure 5). The boundary of the hole is flanked at a distance of 10° by the polar zone of the corona and at one of 20° by that of the prominences. In the polar caps, so far they are occupied by the holes, polar photospheric faculae and the well-known plumes of the polar corona are found, and the polar crown of prominences, encircling the polar hole, is the belt where the reversal of the magnetic polarity takes place.  相似文献   

2.
Li  K.J.  Liu  X.H.  Xiong  S.Y.  Liang  H.F.  Zhan  L.S.  Zhao  H.J. 《Solar physics》2002,211(1-2):165-177
In the present work, the phase relation between activities of solar active prominences respectively at low and high latitudes in the period 1957–1998 has been studied. We found that from the solar equator to the solar poles, the activity of the solar active prominences occurs earlier at higher latitudes, and that the cycle of the solar active prominences at high latitudes (larger than 50°) leads by 4 years both the sunspot cycle and the corresponding cycle of the solar active prominences at low latitudes (less than 40°).  相似文献   

3.
We compare the shape and position of some plasma formations visible in the polar corona with the cyclic evolution of the global magnetic field. The first type of object is polar crown prominences. A two-fold decrease of the height of polar crown prominences was found during their poleward migration from the middle latitudes to the poles before a polar magnetic field reversal. The effect could be assigned to a decrease of the magnetic field scale. The second type of object is the polar plumes, ray like structures that follow magnetic field lines. Tangents to polar ray structures are usually crossed near some point, “a magnetic focus,” below the surface. The distance q between the focus and the center of the solar disk changes from the maximum value about 0.65 R at solar minimum activity to the minimum value about 0.45 R at solar maximum. At first glance this behaviour seems to be contrary to the dynamics of spherical harmonics of the global magnetic field throughout a cycle. We believe that the problem could be resolved if one takes into account not only scale changes in the global magnetic field but also the phase difference in the cyclic variations of large-scale and small-scale components of the global field.  相似文献   

4.
The rotation rates obtained by tracing 124 polar crown filaments are presented in comparison with previous results. Higher filament rotation rate in polar regions was detected and discussed in terms of the various phenomena such as: the projection effect due to the height of measured tracers, the connection of polar filaments with the magnetic field patterns which show an increase of the rotation rate at high latitudes, rigid rotation of polar filaments which form pivot points, and eventual change of the differential rotation law during the cycle. However, when the height correction for an average height of 1% of the solar radius is applied, the filament rotation rate in polar regions decreases. Then the rotation law becomes: () = 14.45 – 0.11 sin2 – 3.69 sin4 (° day–1, sidereal).  相似文献   

5.
High-resolution magnetograph observations of the polar magnetic fields have been obtained at intervals of time since the end of 1986 at Big Bear Solar Observatory. The Big Bear data differ from the low-resolution, full-disk magnetograph observations in that the 2 arc sec resolution makes it possible to resolve concentrated field upward of 100 G. The purpose of this ongoing observation is to examine the evolution of polar fields during the expected polarity reversal as cycle 22 passes its maximum phase, and secondly, to study the polar magnetic field: its true field strength, distribution, and how it compares to other parts of the quiet Sun.We find that the >70° net polar flux of both poles has not reversed as of the end of 1989. However, in the lower latitudes of both poles, 50° to 70°, there are signs reminiscent of those preceding the reversals in cycles 19 and 20. These include: decreasing field intensity in the old polarity fluctuations in net flux between the old and new polarities.We find that the net average longitudinal polar fields (above 50°) are 1–2 G, in agreement with results found in cycles 19 and 20. For individual elements, however, the strongest observed field strength poleward of 70° is over 100 G.We compare the polar fields with the equatorial limb as a function of latitute and longitude, respectively, and find the polar fields are comparable to (or stronger than) the quiet equatorial limb. When the observed mean flux density of the polar field as a function of latitude is corrected for limb-darkening and projection effects (assuming the field is radial), the result is nearly constant. These results suggest that despite the high latitudes, the polar fields have field strength and distribution similar to other parts of the quiet Sun.  相似文献   

6.
Erofeev  D.V. 《Solar physics》2001,203(1):9-25
The distribution of polar faculae with respect to latitude is investigated, using data obtained at the Ussuriysk Observatory during the years 1963–1994. To correct the data for the effect of visibility, a visibility function of polar faculae is derived. Corrected surface density of polar faculae is calculated as a function of latitude and time. During most part of each solar cycle, polar faculae exhibit pronounced concentrations at high latitudes with maxima of the surface density located near the poles. Such concentrations of polar faculae (below referred to as `polar condensations') are formed after a lapse of 1–2 years from the polar magnetic field reversals, and then they persist for 7–9 years, until the high-latitude magnetic fields again start to reverse. During several years after the sunspot minima, the polar condensations co-exist with the new latitudinal belts of polar faculae which appear at middle latitudes and then migrate toward the poles. To describe the evolution of the polar condensations quantitatively, the polar faculae density n at latitudes above 60° has been approximated by means of the power law nn 0 cosm where is polar angle. The parameters n 0 and m both are found to vary during the course of the solar cycle, reaching maximum values near or shortly after the minimum of sunspot activity. At the minimum phase of the solar cycle, on average, the surface density of polar faculae varies as cos14. In addition to the 11-yr variation, the latitude–time distribution of polar faculae exhibits short-term variations occurring on the time scale of 2–3 years.  相似文献   

7.
We have studied the latitude-time distribution of the green (5303 Å) coronal line emission for 1940–1989 from observations by Waldmeier (1957), Kislovodsk, Lomnický tít, Norikura, and Pic-du-Midi - Q.B.S.A. (1955–1987). We have compared these data with the distributions of the weak magnetic field (Stenflo, 1988), of polar faculae and sunspots, and have given our interpretation of the results. We have found that a new cycle of coronal activity commences after the polar field reversal in the form of two components in each hemisphere. We identify the first component with the polar faculae that appear at latitude 40° and migrate polewards. The second component representing sunspots shows up at 40° latitude 5–6 years after and drifts equatorward. Thus the global coronal activity cycle has a duration of 16–17 years and is described by two components that reflect the activity of polar faculae and sunspots.  相似文献   

8.
Prominences, in contrast to other solar activity features, may appear at all heliographic latitudes. The position of zones where prominences are mainly concentrated depends on the cycle phase of solar activity. It is shown, for prominence observations made at Lomnický tít over the period 1967–1996, how the position of prominence zones changes over a solar cycle, and how these zones could be connected with other solar activity features. Our results obtained could be an additional source to do a better prediction of solar activity. Time-latitudinal distribution is also shown for the green corona (Fexiv, 530.3 nm). Distribution of the green coronal maxima shows that there are equator-migrating zones in the solar corona that migrate from latitudes of 45° (starting approximately 2–3 years after the cycle start) to higher latitudes 70°, and then turn (around the cycle maximum) towards the equator, reaching the equator in the next minimum (this duration lasts 18–19 years). Polar branches separate from these zones at the cycle minimum (2–3 years before above-mentioned zones) at latitudes of 50°, reaching the poles at the maximum of the present cycle. The picture becomes dim when more polar prominence zones are observed. Prominences show both the poleward and equatorward migration. Comparison between both solar activity features is also discussed.  相似文献   

9.
We have studied the early stages of development of two adjacent active regions observed at the center and the wings of H for six days. From the growth of spots and arch structures we found that periods of slow flux emergence were followed by periods of vigorous flux emergence. We observed arch filaments covering an appreciable range of sizes (from a length of about 27 000 km and a height of 2000–3000 km to a length of 45 000 km and a height of about 15 000 km). Individual arch filaments within the same arcade sometimes have different inclinations of their planes with respect to the vertical. We observed isolated cases of arches crossing each other at an angle of 45°. During their early stages arch filament systems are short and they expand at a rate of about 0.8 km s–1. The rate of growth of arch filament systems is faster when the orientation of the flux tubes is nearly parallel to the equator. Our observations suggest that the early part of the evolution of individual arch filaments in a grown system is not visible; however, in a few cases we observed arch filaments appearing as dark features near one footpoint and expanding towards the other, with a mean velocity of about 30 km s–1.  相似文献   

10.
Makarov  V.I.  Tlatov  A.G.  Sivaraman  K.R. 《Solar physics》2003,214(1):41-54
We have defined the duration of polar magnetic activity as the time interval between two successive polar reversals. The epochs of the polarity reversals of the magnetic field at the poles of the Sun have been determined (1) by the time of the final disappearance of the polar crown filaments and (2) by the time between the two neighbouring reversals of the magnetic dipole configuration (l=1) from the H synoptic charts covering the period 1870–2001. It is shown that the reversals for the magnetic dipole configuration (l=1) occur on an average 3.3±0.5 years after the sunspot minimum according to the H synoptic charts (Table I) and the Stanford magnetograms (Table III). If we set the time of the final disappearance of the polar crown filaments (determined from the latitude migration of filaments) as the criterion for deciding the epoch of the polarity reversal of the polar fields, then the reversal occurs on an average 5.8±0.6 years from sunspot minimum (last column of Table I). We consider this as the most reliable diagnostic for fixing the epoch of reversals, as the final disappearance of the polar crown filaments can be observed without ambiguity. We show that shorter the duration of the polar activity cycle (i.e., the shorter the duration between two neighbouring reversals), the more intense is the next sunspot cycle. We also notice that the duration of polar activity is always more in even solar cycles than in odd cycles whereas the maximum Wolf numbers W \max is always higher for odd solar cycles than for even cycles. Furthermore, we assume there is a secular change in the duration of the polar cycle. It has decreased by 1.2 times during the last 120 years.  相似文献   

11.
Zirker  J. B.  Leroy  J.-L.  Gaizauskas  V. 《Solar physics》1997,176(2):279-283
Leroy, Bommier, and Sahal-Bréchot (1984) determined the vector magnetic field in a large sample of quiescent prominences. The direction of the axial component is in general subject to a 180 deg uncertainty. We have selected those prominences in the sample whose field direction is unambiguous. For 95 such prominences, only 3 do not obey the hemispheric preferences of sinistral or dextral filaments, discovered by Martin, Tracadas, and Billamoria (1994). No explanation for the exceptional cases was found.A search of the Ottawa River Solar Observatory archives was made to check on the structural signatures of sinistral and dextral filaments. Of 32 filaments in common with the Leroy data set, 12 were classifiable as sinistral or dextral from their H fine structure and of these, 3 were exceptions to the hemispheric rule.Thus only a small percentage of quiescent filaments disobeys the hemispheric rule.  相似文献   

12.
We report measurements of line intensities and line widths for three quiescent prominences observed with the Naval Research Laboratory slit spectrograph on ATM/Skylab. The wavelengths of the observed lines cover the range 1175 Å to 1960 Å. The measured intensities have been calibrated to within approximately a factor 2 and are average intensities over a 2 arc sec by 60 arc sec slit. We derive nonthermal velocities from the measured line widths. The nonthermal velocity is found to increase with temperature in the prominence transition zone. Electron densities and pressures are derived from density sensitive line ratios. Electron pressures for two of the prominences are found to lie in the range 0.04–0.08 dyn cm–2, while values for the third and most intense and active of the three prominences are in the range 0.07–0.22 dyn cm–2.  相似文献   

13.
M. Waldmeier 《Solar physics》1973,28(2):389-398
The polar prominences are concentrated in a zone, which in the period between sunspot minimum and maximum is shifted from about 45° heliographic latitude towards the pole. Cycle No. 20 has shown an anomaly never observed before, as on the northern hemisphere two zones of polar prominences were formed, the second zone following the first one at an interval of 2.5 yrs. The activity in the polar zone is closely connected with that in the main zone. This connection is much tighter than for instance the one between the northern and the southern hemisphere. We therefore investigated whether the anomalous appearance of a second polar zone might be related to a corresponding anomaly in the main zone. Such an irregularity exists in the latitude variation in the main zone. Such a irregularity exists in the latitude variation of the sunspots. After a regular decrease in heliographic latitude up to mid-1969, the northern sunspot zone suddenly shifted by 2.5° towards higher latitudes in the second half of 1969. This jump of the spot zone coincides with the appearance of the secondary polar zone of prominences.Astronomische Mitteilungen der Eidgenössischen Sternwarte Zürich, Nr. 315.  相似文献   

14.
Polar Coronal Holes During Cycles 22 and 23   总被引:3,自引:0,他引:3  
Harvey  Karen L.  Recely  Frank 《Solar physics》2002,211(1-2):31-52
The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.  相似文献   

15.
Makarov  V.I.  Tlatov  A.G.  Sivaraman  K.R. 《Solar physics》2001,202(1):11-26
We present the pattern of the polar magnetic reversal for cycle 23 derived from H synoptic charts and have also included the reversals of the earlier cycles 18–22 for comparison. At the beginning of a new cycle (i.e., soon after the polar reversal) the zonal boundaries of unipolar magnetic regions of opposite polarities (seen as filament bands on the synoptic charts) appear close to and on either side of the equator continuing through the years of minimum indicating the onset of the cancellation of flux at these low latitudes. The cycle thus starts with cancellation of flux close to the equator and ends with the polar reversal or flux cancellation near the poles. The filament bands just below the polemost ones migrate and reach latitudes 35°–45° by the time of polar reversal and become the polemost, once the polar reversal has taken place. During the years of minimum that follow, these filament bands remain more or less stagnant at the latitudes 35°–45° except for occasional slow migration towards the equator. The migration to the poles starts at a low speed of 3 m s–1 only when the spot activity has risen to a significant level and then it accelerates to 30 m s–1 at the peak of the activity. It takes 3–4 years for the polemost bands to reach the poles moving at these high speeds. We quantify this possible cause and effect phenomenon by introducing the concept of the `strength of the solar cycle' and represent this by either of a set of three parameters. We show that the velocity of poleward migration is a linear function of the `strength of the solar cycle'.  相似文献   

16.
We use observations of the green corona low-brightness regions to construct a time series of a polar coronal hole area from 1939 to 1996, covering 5 solar cycles. We then perform a power-spectral analysis of the monthly data time series. Several persistent significant periodicities appear in the spectra, which are related with those found in solar magnetic flux emergence, geomagnetic storm sudden commencements and cosmic-ray flux at Earth. Of particular importance are the peak at around 1.6–1.8 yr recently found in cosmic-ray intensity fluctuations, and the peak at around 1 yr, also identified in coronal hole magnetic flux variations. Additional interesting features are the peaks close to 5 yr, 3 yr and the possible peak at around 30 yr, that were also found in other solar and interplanetary phenomena. Our results stress the physical connection between the solar magnetic flux emergence and the interplanetary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.  相似文献   

17.
Measurements of the rotation rate of polar magnetic features during 1974–76 lead to a significantly slower rotation rate than that found earlier for polar faculae in 1951–54. Similarly, the rotation rate of these features is slower than the Doppler-determined rate at polar latitudes or the rotation rate of polar filaments. It is suggested that the strong latitude rotation gradient in the subsurface magnetic flux tubes which is implied by these results may presage a very active solar maximum for cycle 21.  相似文献   

18.
Previous studies have shown that the measured velocity field in solar prominences exhibits a slightly different behaviour depending on the observational conditions, on the investigation method, and possibly on the type of prominence. Observations of prominences seen at the limb reveal strong downward motions, whereas upflows are detected as Doppler shifts in filaments on the disk. In order to shed new light on this point, we have investigated the mass motions in a solar prominence by using a new method for calculating the geometric distortion between subsequent images. Flows perpendicular to the line of sight have been determined in several layers of the prominence-corona atmosphere, using extreme ultraviolet (EUV) lines formed at different temperature levels (T=104–106 K). We show that the motions mainly have a vertical direction, oriented both upwards and downwards. The velocity pattern can change rapidly during time intervals exceeding 10–15 min. We also find that the measured velocity field shows a similar pattern in all the studied lines.  相似文献   

19.
We have compared the latitudinal distributions of polar faculae, green coronal emission maxima, prominences and of a new index of enhanced geomagnetic recurrence with the distribution of magnetic fields during the cycles Nos. 20 and 21.We did not find a distinct high-latitude initial stage of an extended cycle in the corona, prominences and polar faculae distribution. On the contrary, it seems that the polar faculae and their following polarity magnetic fields represent the last evolutionary phase of a magnetic activity cycle lasting 15–17 years. The enhanced recurrent geomagnetic activity seems to be related to the old cycle fields.All studied phenomena clearly display two types of latitudinal distribution: the polar belts, into which the old following polarity fields have been transported from the equatorial belt where both the polarities developin situ simultaneously, but in which the leading polarity fields only remain, crossing the equator during the minimum of activity, to play the same role on the opposite hemispheres in the new cycle.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

20.
Sunspot drawings obtained at the National Astronomical Observatory of Japan during the years 1954–1986 were used to determine meridional motions of the Sun. A meridional flow of a few ms–1 was found, which is equatorward in the latitude range from -20° to +15° and is poleward at higher latitudes in both hemispheres. A northward flow of 0.01° day–1 or 1.4 ms–1 at mid-latitudes (between 10° and 20°) was also detected. From our limited data-set of three solar cycles, an indication of solar-cycle dependence of meridional motions was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号