首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. J. Hanski 《Lithos》1993,29(3-4):197-216
The uppermost volcanic unit of the early Proterozoic Pechenga Group comprises ferropicritic volcanic and hypabyssal rocks which possess well-developed, light-weathering globular (up to 10 cm in size) or layer-like structures mesoscopicly similar to those found in some Archean ocellar komatiites. These structures are superficially reminiscent of features attributed to liquid immiscibility including spheroidal aggregates in all stages of coalescence. However, several lines of field, microscopical, mineralogical and chemical evidence argue against the immiscibility hypothesis. These include identical modal proportions, grain sizes, morphologies and orientations of crystalline phases in the globules and matrix, as strikingly demonstrated, for example, by the spinifex-textured varieties of the globular rocks. A solid-state hydrothermal/metamorphic diffusional process that affected the originally glassy mesostasis is concluded to be the only feasable mechanism for the formation of the globular structures in the Pechenga ferropicrites.  相似文献   

2.
3.
Summary Ni, Co, Fe arsenic minerals are common accessory phases associated with both the Ni-Cu mineralization and country rock sulphides of the Pechenga complex. The majority of the arsenic minerals fall in the cobaltite-gersdorffite series, with minor arsenopyrite, nickeline and maucherite. These minerals are regularly distributed between different types of mineralization. Nickeline, maucherite and gersdorffite occur mainly in hydrothermally altered Ni-Cu sulphide ores, in particular stringer zone sulphides and mineralized talc-carbonate rocks. Arsenopyrite occurs only in pentlandite-free assemblages of the host shales, mainly in remobilized iron sulphide mineralization. The concentrations of Ni and Co in arsenopyrite decrease with the distance from the Ni-Cu bearing intrusions. Cobaltite is an ubiquitous mineral, but Ni-rich cobaltite occurs mainly in the Ni-Cu ores. In general, the transition from Ni-Cu ores to country rocks is marked by the change from Ni-arsenides to Ni-Co sulpharsenides and, finally, to Fe sulpharsenides.Sedimentary pyrite in sulphidic shales contains up to 1.8 wt.% As and was initially enriched in arsenic during sedimentation and diagenesis. Metamorphic recrystallization of authigenic As-bearing pyrite to As-free pyrrhotite led to significant liberation of arsenic during metamorphism. The mobilized arsenic could have been carried by associated metamorphic fluids and then participated in the low-grade alteration of the ultramafic rocks and associated Ni-Cu sulphide ores.
Zusammensetzung und Verteilung der akzessorischen Ni-, Co und Fe-Arsenminerale in den Nickel-Kupferlagerstätten von Pechenga, Kola-Halbinsel, Rußland
Zusammenfassung Ni-, Co- und Fe-Arsenminerale sind verbreitete akzessorische Phasen, sowohl in den Nickel-Kupfer-Vererzungen, als auch in den Sulfiden der Nebengesteine des PechengaKomplexes. Der Großteil der Arsenminerale ist zur Cobaltit-Gersdorffit-Serie zu stellen. Arsenkies, Nickelin und Maucherit sind in geringeren Mengen vorhanden. Diese Minerale sind zwischen den verschiedenen Vererzungstypen gleichmäßig verteilt. Nickelin, Maucherit und Gersdorffit kommen hauptsächlich in hydrothermal veränderten Ni-Cu-Sulfiderzen vor, besonders in Sulfiden der Stringer-Zone und in mineralisierten Talk-Karbonat-Gesteinen. Arsenkies kommt nur in Pentlandit-freien Paragenesen in den schiefrigen Nebengesteinen, vor allem in einer remobilisierten Eisensulfidvererzung, vor. Die Konzentrationen von Ni, Fe und Co in Arsenkies nehmen mit zunehmender Entfernung von den Ni-Cu-führenden Intrusionen ab. Cobaltit ist ein verbreitetes Mineral, wobei nickelreicher Cobaltit jedoch hauptsächlich in den Nickel-Kupfererzen vorkommt. Im allgemeinen wird der übergang von NickelKupfererzen zu Nebengesteinen durch den übergang von Nickelarseniden zu NickelKobalt-Sulpharseniden und schließlich zu Eisensulpharseniden markiert.Sedimentärer Pyrit in den schiefrigen Nebengesteinen enthält bis zu 1,8 Gew% As, wobei die Arsenanreicherung während der Sedimentation und Diagenese erfolgten. Metamorphe Rekristallisation authigener As-führenden Pyrite zu As-freiem Magnetkies führte zu signifikanter Freisetzung von Arsen während der Metamorphose. Das mobilisierte Arsen dürfte durch metamorphe Fluide transportiert worden sein, die an der niedriggradigen Alteration der ultramafischen Gesteine und der assoziierten NickelKupfererze beteiligt waren.


With 8 Figures  相似文献   

4.
在2010年,美国图桑的矿物宝石化石展销会上出现了一种新的玉石品种,其产自俄罗斯科拉半岛的铬云母玉。利用偏光显微镜、X射线粉末衍射仪、激光诱导离解光谱仪、红外光谱仪等测试方法对俄罗斯科拉半岛铬云母玉样品进行了分析与研究,初步确定其矿物组成、结构特征及宝石学性质。结果表明,该铬云母玉的主要矿物组成为铬云母、石英、长石,并含有少量的蓝晶石、十字石、高岭石、黄铁矿等;具有不等粒变晶结构和片麻状构造。与东陵石(即含铬云母的石英岩)的矿物组成和宝石学特征对比后,提出以铬云母的质量分数20%作为铬云母玉与东陵石的分类界限,其相应的宝石学和物理性质也可以对二者加以区分。  相似文献   

5.
Jinshanjiangite (acicular crystals up to 2 mm in length) and bafertisite (lamellar crystals up to 3 × 4 mm in size) have been found in alkali granite pegmatite of the Gremyakha-Vyrmes Complex, Kola Peninsula. Albite, microcline, quartz, arfvedsonite, zircon, and apatite are associated minerals. The dimensions of a monoclinic unit cell of jinshanjiangite and bafertisite are: a = 10.72(2), b=13.80(2), c = 20.94(6) Å, β = 97.0(5)° and a = 10.654(6), b = 13.724(6), c = 10.863(8) Å, β = 94.47(8)°, respectively. The typical compositions (electron microprobe data) of jinshanjiangite and bafertisite are: (Na0.57Ca0.44)Σ1.01(Ba0.57K0.44)Σ1.01 (Fe3.53Mn0.30Mg0.04Zn0.01)Σ3.88(Ti1.97Nb0.06Zr0.01)Σ2.04(Si3.97Al0.03O14)O2.00(OH2.25F0.73O0.02)Σ3.00 and (Ba1.98Na0.04K0.03)Σ2.05(Fe3.43Mn0.37Mg0.03)Σ3.83(Ti2.02Nb0.03)Σ2.05 (Si3.92Al0.08O14)(O1.84OH0.16)Σ2.00(OH2.39F1.61)Σ3.00, respectively. The minerals studied are the Fe-richest members of the bafertisite structural family.  相似文献   

6.
The rocks of the Khibiny pluton contain 25 amphibole varieties, including edenite, fluoredenite, kaersutite, pargasite, ferropargasite, hastingsite, magnesiohastingsite, katophorite, ferrikatophorite, magnesiokatophorite, magnesioferrikatophorite, magnesioferrifluorkatophorite, ferrimagnesiotaramite, ferrorichterite, potassium ferrorichterite, richterite, potassium richterite, potassium fluorrichterite, arfvedsonite, potassium arfvedsonite, magnesioarfvedsonite, magnesioriebeckite, ferriferronyboite, ferrinyboite, and ferroeckermannite. The composition of rock-forming amphiboles changes symmetrically relative to the Central Ring of the pluton; i.e., amphiboles enriched in K, Ca, Mg, and Si are typical of foyaite near and within the Central Ring. The Fe and Mn contents in amphiboles increase in the direction from marginal part of the pluton to its center. Foyaite of the marginal zone contains ferroeckermannite, richterite, arfvedsonite, and ferrorichterite; edenite is typical of foyaite and hornfels of the Minor Arc. Between the Minor Arc and the Central Ring, foyaite contains ferroeckermannite, arfvedsonite, and richterite; amphiboles in rischorrite, foidolite and hornfels of the Central Ring are (potassium) arfvedsonite, (potassium) richterite, magnesiokatophorite, magnesioarfvedsonite, ferroeckermannite, and ferriferronyboite; amphiboles in foyaite within the Central Ring, in the central part of the pluton, are arfvedsonite, magnesioarfvedsonite, ferriferronyboite, katophorite, and richterite. It is suggested that such zoning formed due to the alteration of foyaite by a foidolite melt intruded into the Main (Central) Ring Fault.  相似文献   

7.
Data on the occurrence, morphology, anatomy, composition, and formation conditions of loparite-(Ce) in the Khibiny alkaline pluton are given. Loparite-(Ce), (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6, resulted from metasomatic alteration and assimilation of metamorphic host rocks at the contact with foyaite as well as foyaite on the contact with foidolite. This alteration was the highest in pegmatite, and albitite developed there. A decrease in temperature resulted in enrichment of the perovskite and tausonite endmembers in loparite-(Ce) owing to a decrease in the loparite and lueshite endmembers. La and Ce sharply predominate among rare earth elements in the composition of loparite-(Ce).  相似文献   

8.
《Applied Geochemistry》1999,14(6):787-805
Water samples were taken from 120 lakes spread over the western half of the Kola Peninsula, NW Russia. The samples were analysed for 37 elements, pH and electrical conductivity. Lake water chemistry appears in most cases to be dominated by a Ca/Na–HCO3 signature, characteristic of natural carbonate/silicate weathering. Input of elements from marine derived salts and from the Ni industry (roasting plant at Zapoljarnij, smelter at Nikel and smelter/refinery at Monchegorsk) emissions are restricted to limited regions. Considering that 3 of the world's largest point source emitters of SO2 are located within the area, the median lake water pH is surprisingly close to neutral (6.6, range 4.2–7.4). Indeed some of the apparently SO4 contaminated lakes nearest to the smelters yield the highest pH values. Changes in climate and vegetation from north to south within the survey area probably have an influence on element concentrations and pH as observed in the lake waters. Proton displacement by sea salt cation input provides an explanation of low pH lakes in coastal areas.  相似文献   

9.
10.
The history of postglacial emergence on the Murman coast, Kola Peninsula, is reconstructed based on twelve new radiocarbon ages from three marine sections and regional shoreline observations. Two pronounced shore levels are recognized below the Late Weichselian marine limit. The lower shoreline (11 -16 m a.s.l.) is associated with a transgression dated to 6200–6600 BP, correlative to the Tapes transgression on the Norwegian coastline. The upper shoreline (36–47 m a.s.l.) is not yet dated directly but probably correlates to the Main (Younger Dryas) shoreline. Strandline elevations descend eastward along the Murman coast. Observed emergence trends suggest the greatest regional Late Weichselian glacier load over the west-central Kola Peninsula rather than in the southern Barents Sea.  相似文献   

11.
This paper describes the structural-compositional zoning of the well-known Khibiny pluton in regard to rock-forming feldspars. The content of K-Na-feldspars increases inward and outward from the Main foidolite ring. The degree of coorientation of tabular K-Na-feldspar crystals sharply increases in the Main ring zone, and microcline-dominant foyaite turns into orthoclase-dominant foyaite. The composition of K-Na-feldspars in the center of the pluton and the Main ring zone is characterized by an enrichment in Al. This shift is compensated by a substitution of some K and Na with Ba (the Main ring zone) or by an addition of K and Na cations to the initially cation-deficient microcline (the central part of the pluton). Feldspars of volcanosedimentary rocks occurring as xenoliths in foyaite primarily corresponded to plagioclase An15–40, but high-temperature fenitization and formation of hornfels in the Main ring zone gave rise to the crystallization of anorthoclase subsequently transformed into orthoclase and albite due to cooling and further fenitization. Such a zoning is the result of filling the Main ring fault zone within the homogeneous foyaite pluton with a foidolite melt, which provided the heating and potassium metasomatism of foyaite and xenoliths of volcanosedimentary rocks therein. The process eventually led to the transformation of foyaite into rischorrite-lyavochorrite, while xenoliths were transformed into aluminum hornfels with anorthoclase, annite, andalusite, topaz, and sekaninaite.  相似文献   

12.
The internal structure of the Volchetundra gabbro-anorthosite massif is considered, including localization of low-sulfide PGE mineralization and its mineralogy. The Volchetundra massif 24 km long and 0.5–4.0 km wide occupies the middle part of the Main Range complex, which extends for 75 km in the nearly meridional direction. The main and marginal zones are distinguished in the massif. The marginal zone 20–400 m wide extends along the entire eastern contact of the massif and is primarily composed of mediumgrained meso- and leucocratic norite, gabbronorite, plagioclasite, and less fequent orthopyroxenite. The main zone consists of coarse-grained leucogabbro and gabbronorite with an anorthosite zone in the axial part of the massif. The PGE mineralization of the Volchetundra massif is distinctly subdivided into two types substantially differing in localization, mineralogy, geochemistry, and economic importance. Mineralization of the first type is localized in the marginal zone and characterized by the highest resource potential. Mineralization hosted in the main zone belongs to the second type. The PGE ore of marginal zone is spatially and genetically related to the pyrite-pentlandite-chalcopyrite-pyrrhotite sulfide mineralization (1–5%) in the form of fine inequigranular interstitial disseminations, and less frequent larger grains and pockets localized within two ore zones each up to 2 km in extent. The thickness of separate mineralized layers varies from 0.5 to 3.0 m and up to 45 m in bulges. The average Pt + Pd grade is 1.37 gpt at Pd/Pt = 3.1. The mineralization of the second type has been penetrated by boreholes. Separate intersections do not correlate with one another and are limited in extent both along the strike and down the dip. The PGE mineralization is related to finely dispersed pentlandite-pyrite-pyrrhotite-chalcopyrite sulfides, sulfide emulsions, and less abundant stringer-disseminated sulfide ore. The orebodies vary from 2 to 7 m in thickness. The average Pt + Pd grade is 1.61 gpt; Pd/Pt = 1.3. The PGE mineralization includes 22 mineral species. PGE sulfides (cooperite-braggite-vysotskite; laurite and erlichmanite in insignificant amounts) are predominant. Bismuthotellurides (moncheite-kotulskite-merenskyite) and arsenides (sperrylite, palladoarsenite, arsenopalladinite, atheneite) are subordinate in abundance. In addition, sulfoarsenides (platarsite, hollingworthite), tellurides (telargpalite, sopcheite, keithconnite, melonite, hessite), paolovite, and Pt-Fe alloy have been identified. An admixture of native gold and electrum occur constantly.  相似文献   

13.
The Lovozero nepheline-syenite massif in the north-eastern Fennoscandian Shield, well-known to mineralogists and petrologists, is also interesting with its high contents of hydrogen-hydrocarbon gases in different forms of presence, which is untypical of magmatic rocks. The article systematizes and generalizes little known and unpublished data on the composition, location, character and scale (intensity) of the free gases (FG) emission within a major loparite deposit confined to the massif. СН4 and Н2 are dominant in the FG composition. The molecular weight distribution of hydrocarbon gas components corresponds to the classic Anderson–Schulz–Flory distribution with a steep gradient. Carbon and hydrogen of the gases are characterized by rather heavy isotope compositions, becoming lighter from the transition of methane to ethane. The FG volume has been estimated as 0.2–1.6 m3 of gas per 1 m3 of undisturbed rock. The gas recovery of walls in underground workings has been up to 0.2 ml/min/m2 for СН4 and 0.5 ml/min/m2 for Н2 in several years after their heading. The discharge of some shot holes that characterizes the gas emission intensity (1.8–2 m deep and 40 mm in diameter) is up to 300 ml/min, but its 1–2 orders lesser values dominate. The discharge time in some sections varies from several days to 20 years. The overpressure of gases towards the air mainly does not increase 100 hPa, sometimes reaching 120 kPa. It has been defined, that FG distribute irregularly (at the distance of centimeters to hundreds of meters) and their composition and particularly emission intensity perform different temporal fluctuations. The abiogenic origin of FG has been proposed, with FG appearing as a mixture of gases in various proportions: (a) gases remaining in microfissures at the massif's consolidation after the capture by fluid inclusions and those lost during degassing and (b) gases occurred in mechanic-chemical reactions, partial emission and concentration of occluded and diffusely scattered gases under the unstable stress-strain mode of the rock mass. Combustible and explosive hydrogen-hydrocarbon FG can accumulate in the air of underground workings and cause accidents, disrupting the workflow. The background for using characteristics of spatial-temporal variations of the FG emission as precursors of dangerous geodynamic phenomena has been indicated.  相似文献   

14.
This paper presents new data on chromium mineralization in a fenitized xenolith in Mt. Kaskasnyunchorr in the Khibiny alkaline massif (Kola Peninsula, Russia) and summarizes data on Cr mineralogy in the Khibiny Mountains. Protolith silicates that contained Cr3+ admixture are believed to be the source of this element in the fenite. Cr-bearing (maximum Cr2O3 concentrations, wt %, are in parentheses) aegirine (5.8), crichtonite-group minerals (2.1), muscovite (1.3), zirconolite (1.1), titanite (1.0), fluorine-magnesioarfvedsonite (0.8), biotite (0.8), ilmenite (0.6), and aenigmatite (0.6) occur in the fenite. The late-stage spinellides of the FeTi-chromite-CrTi-magnetite series, which are very poor in Mg and Al and which formed after Crrich aegirine and ilmenite, are the richest in Cr (up to 42% Ct2O3). Cr concentrations grew with time during the fenitization process. Unlike minerals in the Khibiny ultramafic rocks where Cr is associated with Mg, Al (it is isomorphic with Cr), and with Ca, chromium in the fenites is associated with Fe, Ti, and V (with which Cr3+ is isomorphic) and with Na in silicate minerals. Cr3+ Mobility of Cr3+ and the unique character of chromium mineralization in the examined fenites were caused by high alkalinity of the fluid.  相似文献   

15.
Summary The Lesnaya Varaka ultramafic alkaline complex in the northeastern Fennoscandian Shield (Kola Peninsula, NW Russia) is a concentrically-zoned intrusion with a dominantly dunitic core (Fo85-92) surrounded by clinopyroxenites. The complex resembles an Alaskan-type intrusion, but differs in its strong alkaline affinity. Native copper occurs as small (5 to 15 m), subhedral to euhedral crystals, isolated within titanomagnetite, in a dunite containing abundant titanomagnetite-perovskite mineralization (up to 30 modal %). Nickel-rich (4.1–4.5 wt.% Ni) tetraferroplatinum is also present as minute (up to 5 gmm) subhedral crystals, enclosed by titanomagnetite. They are typically partially rimmed by rhodian pentlandite ( 6 wt.% Rh). The copper crystals contain 0.6 to 10.1 wt.% Pt, 2.1 to 3.0 wt.% Ni, and essential Fe (approximately 2 to 3 wt.%). There is a wide variation in the Pt content between individual crystals, but its distribution within single crystals is fairly constant. Compared with Cu-Pt alloys from other localities, solid solution of Cu with Pt in the Lesnaya Varaka native copper is low. Unlike most occurrences in ultramafic rocks, the crystalline copper at Lesnaya Varaka appears to be a primary phase, which formed under moderately oxidizing conditions and at very low sulphur activities.
Primäres Platin führendes Kupfer aus dem ultramafisch-alkalischen Lesnaya Varaka Komplex, Halbinsel Kola, nordwestliches Rußland
Zusammenfassung Der ultramafisch-alkalische Lesnaya Varaka Komplex im nordöstlichen Fennoskandischen Schild (Halbinsel Kola, NW Rufland) ist eine konzentrisch zonierte Intrusion mit einem Dunitkern (Fo85-92) umgeben von Klinopyroxeniten. Der Komplex ähnelt einer Alaskan-Typ Intrusion, unterscheidet sich aber durch seine stark alkalische Affinität. Gedigen Kupfer tritt in einem Dunit, der verbreitet eine TitanomagnetitPerovskit Mineralisation führt, in Form kleiner (5 bis 15 m), sub- bis euhedraler Kristalle isoliert im Titanomagnetit auf. Nickel-reiches (4.l-4.5 Gew. % Ni Tetraferroplatin kommt ebenfalls in Form winziger (bis zu ca. 5 m subhedraler Kristalle im Titanomagnetit vor. Typischerweise sind diese Kristalle zum Teil von Rhodium-führendem Pentlandit (ca. 6 Gew.% Rh) umgeben. Die Kupferkristalle führen 0.6 bis 10.1 Gew.% Pt, 2.1 bis 3.0 Gew.% Ni und beträchtliche Gehalte an Fe (ca. 2–3 Gew.%). Die Pt-Gehalte zwischen verschiedenen Kristallen streuen stark, während sie innerhalb einzelner Kristalle ziemlich konstant sind. Im Vergleich mit Cu-Pt Legierungen von anderen Lokalitäten ist die Mischbarkeit von Cu und Pt im Kupfer von Lesnaya Varaka gering. Im Unterschied zu den meisten anderen ultramafischen Gesteinen, scheint das kristalline Kupfer von Lesnaya Varaka eine primäre Phase zu sein, die sich unter mäßig oxidierenden Bedingungen und bei sehr niedrigen Schwefelaktivitäten gebildet hat.
  相似文献   

16.
Eight catchments, an area of 15 to 35 km2, have been studied within an ecogeochemical mapping programme in the western Kola Peninsula and contiguous parts of Finland and Norway. Three catchments, one northeast of Zapolyarniy (1) and two, 5 and 25 km south of Monchegorsk (2 and 4) show high levels of deposition of heavy metals, especially nickel (Ni) and copper (Cu), related to the metallurgical industry in these cities. Twenty-five topsoil samples, from sites evenly distributed over catchment 2, have mean contents of Ni and Cu 1 to 2 orders of magnitude higher than both C-horizon samples from the same sites and topsoil samples from catchment 4, providing strong evidence for the anthropogenic origin of the heavy metals. The same samples show geometric mean total contents for the noble metals analysed of: 1.4 μg/kg rhodium (Rh), 49.6 μg/kg platinum (Pt), 187.6 μg/kg palladium (Pd) and 9.5 μg/kg gold (Au). The pattern of concentration of the noble metals mirrors that found in published averages for ore from the Talnakh mineralizations in the Noril'sk province, though 1–2 orders of magnitude lower. This also clearly shows that the noble-metal contents of the topsoil are anthropogenic, and suggests that they emanate from the plants in Monchegorsk at an early stage in treatment of the ore, probably as a minor component of Ni-Cu rich particles. The noble-metal geochemistry of the topsoil in the other catchments also reflects the nature of the ore being processed at the plants nearby.  相似文献   

17.
The Khibiny Complex hosts a wide variety of carbon-bearing species that include both oxidized and reduced varieties. Oxidised varieties include carbonate minerals, especially in the carbonatite complex at the eastern end of the pluton, and Na-carbonate phases. Reduced varieties include abiogenic hydrocarbon gases, particularly methane and ethane, dispersed bitumens, solid organic substances and graphite. The majority of the carbon in the Khibiny Complex is hosted in either the carbonatite complex or within the so-called “Central Arch”. The Central Arch is a ring-shaped structure which separates khibinites (coarse-grained eudialite-bearing nepheline-syenites) in the outer part of the complex from lyavochorrites (medium-grained nepheline-syenites) and foyaites in the inner part. The Central Arch is petrologically diverse and hosts the major REE-enriched apatite–nepheline deposits for which the complex is best known. It also hosts zones with elevated hydrocarbon (dominantly methane) gas content and zones of hydrothermally deposited Na-carbonate mineralisation. The hydrocarbon gases are most likely the product of a series of post-magmatic abiogenic reactions. It is likely that the concentration of apatite-nepheline deposits, hydrocarbon gases and Na-carbonate mineralisation, is a function of long lived fluid percolation through the Central Arch. Fluid migration was facilitated by stress release during cooling and uplift of the Khibiny Complex. As a result, carbon with a mantle signature was concentrated into a narrow ring-shaped zone.  相似文献   

18.
For the first time Pb isotope composition was established in Lovozero rocks and raremetal ores, which is important for identifying their sources. The world’s largest layered intrusion of agpaitic nepheline syenite-the Lovozero alkaline massif—is located near the center of the Kola Peninsula in Russia. This superlarge complex plutonic body hosts the economically important loparite and eudiallyte deposits [1]. These deposits contain immense resources of REE, Nb, Ta, Zr, and constitute a world class mineral district. The Lovozero massif belongs to the Kola ultramafic alkaline and carbonatitic province (KACP) of Devonian age. Previous bulk rock studies have shown that the initial Sr and Nd isotope ratios of Lovozero rocks plot in the depleted mantle quadrant of Sr-Nd diagrams [2]. More recently, Hf isotope data obtained by Kogarko et al. (3) confirm that the Lovozero and Khibina massifs with ?Hf between 6 and 8 are derived predominantly from a depleted mantle source. It was shown that Sr, Nd, and Hf abundances are significantly elevated in the Kola alkaline rocks, and thus their isotopic compositions are relatively insensitive to minor contamination by the overlying crustal rocks. By contrast, Pb in the KACP rocks is a much more sensitive indicator of a crustal component. In this paper we investigate the lead isotopic signature of all resentative types of Lovozero rocks (Table 1) in order to further characterize their mantle sources. The Lovozero massif consists of four intrusive phases. Rocks of phase I (mostly nepheline syenites) comprise about 5% of the total volume, phase II (urtites, foyaite, lujavrites) forms the main portion of the massif comprising 77% in volume, and phase III (eudialyte lujavrites) contributes about 18%. Country rocks are represented by Devonian effusive rocks and Archean gneisses.  相似文献   

19.
A sediment core from Chuna Lake (Kola Peninsula, northwest Russia) was studied for pollen, diatoms and sediment chemistry in order to infer post‐glacial environmental changes and to investigate responses of the lake ecosystem to these changes. The past pH and dissolved organic carbon (DOC) of the lake were inferred using diatom‐based transfer functions. Between 9000 and 4200 cal. yr BP, slow natural acidification and major changes in the diatom flora occurred in Chuna Lake. These correlated with changes in regional pollen, the arrival of trees in the catchment, changes in erosion, sediment organic content and DOC. During the past 4200 yr diatom‐based proxies showed no clear response to changes in vegetation and erosion, as autochthonous ecological processes became more important than external climate influences during the late Holocene. The pollen stratigraphy reflects the major climate patterns of the central Kola Peninsula during the Holocene, i.e. a climate optimum between 9000 and 5400/5000 cal. yr BP when climate was warm and dry, and gradual climate cooling and an increase in moisture during the past 5400/5000 yr. This agrees with the occurrence of the north–south humidity gradient in Fennoscandia during the Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A sediment core from Lake Soldatskoje, a small tundra lake located in the northern coastal area of the Kola Peninsula and surrounded by numerous archaeological dwelling sites, was analysed for diatom species. The core covers the entire Holocene, i.e. 10000 radiocarbon years. The diatom record has similarities with studies made earlier from tundra lakes of northern Russia and from Arctic lakes in general. The genus Fragilaria was dominant and many other small, benthic, nordic, cold-water diatom species typical of Arctic lakes were common, including Achnanthes minutissima Kützing, A. pusilla (Grunow) De Toni, Cyclotella tripartita Håkansson and Navicula absoluta Hustedt. Multivariable ordinations were used to characterize the changes in the diatom flora. Diatom-based pH and total phosphorus inferences indicate that the lake has become progressively more acidic and poorer in nutrients. Disturbances in the diatom stratigraphy of Lake Soldatskoje around 4000–5500 14C yr BP may be related to human activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号