首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The present article illustrates a straightforward case of hydrothermal dolomitization, affecting Jurassic platform limestones of the Provençal and Subbriançonnais Domains (Maritime Alps, North-Western Italy). Dolomitized bodies are randomly distributed within the host limestone, and are commonly associated with dolomite vein networks and tabular bodies of dolomite-cemented breccias discordant with respect to bedding. Main dolomite types are a finely to medium-crystalline replacive dolomite and a coarsely-crystalline saddle dolomite occurring both as replacive and as cement. Stratigraphic constraints indicate that dolomitization occurred during the Cretaceous, in a shallow burial context, and was due to the circulation of hot fluids (temperature about 200 °C, as indicated by fluid inclusion microthermometry) through faults and related fracture networks. Hydrothermal dolomitization therefore indirectly documents a Cretaceous fault activity in the Maritime Alps segment of the European Tethyan passive margin.  相似文献   

2.
A multidisciplinary study, conducted over the carbonate platform deposits of the Liassic Calcari Grigi Group (Southern Alps), highlighted how the use of outcrop analogues can contribute to better define the distribution of dolomitic bodies related to fault networks, to characterize the petrophysical properties of the dolomitic sequence and unravel a complex diagenetic history. This study was carried out in the Asiago Plateau (southernmost part of the eastern Southern Alps, northern Italy) which provides excellent outcrops of the Jurassic Calcari Grigi Group. The dolomitization of the Jurassic sequence is variable in terms of stratigraphic extension and geographic distribution. In the studied localities the dolomitization is generally limited to the Mount Zugna Formation and is characterized by an undulatory front, with ‘sub‐vertical dolomitic chimneys’ along the major faults. Within this unit, and often associated with faults, stacked high‐porosity and permeability bed‐parallel dolomitic bodies are developed that show excellent petrophysical properties. The dolomitic intervals are characterized by pervasive unimodal and patchy polymodal dolomite crystals. Thin section, cathodoluminescence, isotopic and fluid inclusion analyses were used to constrain the paragenetic evolution of the sequence which is similar in all the studied localities. The first dolomitization stage is marked by zoned dolomite crystals with a dull luminescent core. The porosity is thought to have increased after this stage, with dark blue luminescent dolomite accompanied by the corrosion of older crystals. The appearance of saddle dolomite marks the onset of the porosity reduction stage, ending with the infilling of vugs and the remaining open pores with calcite cement. The diagenetic evolution locally stopped at the saddle dolomite stage with the complete occlusion of the remaining pores. Paragenetic and fluid‐inclusion data suggest an evolutionary trend of increasing temperatures and decreasing salinity toward brackish fluids responsible for dolomite and calcite precipitation. The integration of the available data seem to indicate that the diagenetic evolution of the study area is related to: (i) the interplay between evolving fluids (from marine to brackish); (ii) the burial of the sequence (increasing temperature); and (iii) the evolution of the hydrogeological system (fault and fracture network, fluid mixing). This complex paragenetic evolution is strongly linked to the evolution of the porosity framework that evolved from a good, widespread network in the early stages of the burial history to a confined system in the later stages due to reduction of porosity by the deposition of late calcite and dolomite cements.  相似文献   

3.
4.
The NW–SE shortening between the African and the Eurasian plates is accommodated in the eastern Betic Cordillera along a broad area that includes large N‐vergent folds and kilometric NE–SW sinistral faults with related seismicity. We have selected the best exposed small‐scale tectonic structures located in the western Huércal‐Overa Basin (Betic Cordillera) to discuss the seismotectonic implications of such structures usually developed in seismogenic zones. Subvertical ESE–WNW pure dextral faults and E–W to ENE–ESW dextral‐reverse faults and folds deform the Quaternary sediments. The La Molata structure is the most impressive example, including dextral ESE–WNW Neogene faults, active southward‐dipping reverse faults and associated ENE–WSW folds. A molar M1 assigned to Mimomys savini allows for precise dating of the folded sediments (0.95–0.83 Ma). Strain rates calculated across this structure give ~0.006 mm a?1 horizontal shortening from the Middle Pleistocene up until now. The widespread active deformations on small‐scale structures contribute to elastic energy dissipation around the large seismogenic zones of the eastern Betics, decreasing the seismic hazard of major fault zones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Precambrian banded iron formations (BIFs) in the Quadrilátero Ferrífero host a special kind of Au–Pd mineralization known as Jacutinga. The main orebodies are hosted within the Cauê Syncline, a SW-verging fold that involves Paleoproterozoic metasedimentary rocks in the Itabira District, a regional synclinorium with BIFs in the core of synclinal folds in the northeastern part of Quadrilatéro Ferrífero, Minas Gerais. Structural analysis reveals two important features of the district: the polydeformed character of the rocks and the importance of brittle structures in the control of the orebodies. Two deformational events are recognized in this area. The first event developed the main foliation, S1, that is the enveloping surface of the Cauê Syncline. The second event is better defined in the northern boundary of the structure where it is represented by a right-lateral wrench fault zone that has developed a foliation, S2, that truncates S1. This wrench fault was also responsible for the development of a system of fractures (Frm) that host the Au–Pd mineralization. The auriferous bodies of Cauê Syncline (Y, X, Área Central, Aba Norte, Noroeste and Aba Leste/Aba Leste Inferior) were generated during this second event. Shear fractures (R, R′ and P) and tension fractures (T) developed in response to the wrench fault system under brittle conditions. The best-developed, and most commonly mineralized fractures are R and T in all auriferous bodies. Elsewhere, the best mineralization occurs in the contacts of hematite bodies (soft/hard) and intrusive rocks with fractured itabirites. Other mineralization (Aba Norte, Área Central and X) is hosted on the contacts of other units.A system of fractures, as well as their intersections, thus represents the structural control on Jacutinga bodies and is responsible for the geometry of the orebodies. Of importance, there is no control by mineral/stretching lineations, fold axes and other ductile structure on the geometry and plunge of the orebodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号