首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The IZMIRAN database of Forbush effects and interplanetary disturbances was used to study features of the action of high-speed solar wind streams from coronal holes on cosmic rays. Three hundred and fifty Forbush effects created by coronal holes without other actions were distinguished. The mean values and distributions have been found for different characteristics of events from this group and compared with all Forbush effects and Forbush effects caused by coronal ejections. Despite the great differences in high-speed streams from coronal holes, this group turned out to be more compact and uniform as compared to events related to coronal ejections. Regression dependences and correlation relations between different parameters of events for the studied groups have been obtained. It has been shown that Forbush effects caused by coronal ejections depend considerably more strongly on the characteristics of interplanetary disturbances as compared to Forbush effects related to coronal holes. This suggests a significant difference between the modulation mechanisms of Forbush effects of different types and corroborates earlier conclusions based on indirect data.  相似文献   

2.
The IZMIRAN database of Forbush effects and interplanetary disturbances has been used to study long-term changes in the number and magnitude of Forbush effects in the last six solar cycles (1957–2016) for cosmic rays of rigidity of 10 GV. Solar activity cycles have been shown to be well expressed in data of Forbush effects, especially in large magnitude events that almost disappear in minima. The changes in the distribution of Forbush effects and the decrease in their average values from solar activity maximum to minimum are explained by the predominance of cosmic-ray variations due to the action of coronal holes at low activity. It should be noted that the current cycle involves fewer and generally weaker Forbush effects than in the previous five cycles. For each month, an FD index combining the magnitude and number of Forbush effects and convenient for studying long-term variations has been proposed and calculated.  相似文献   

3.
For a comprehensive study of the Forbush effects and their relation to solar and geomagnetic activity, a database of transient phenomena in cosmic rays and the interplanetary medium has been created, which is continuously updated with data on new events. Based on these data, we study the dependence of the Forbush effects on various internal and external parameters, as well as select different groups of events. In this paper, we consider recurrent (caused by high-speed solar wind streams from coronal holes) and sporadic (associated with coronal mass ejections) events. We investigate groups of events with a sudden and gradual onset. We show that the resulting dependencies of the Forbush effects (on the parameters of interplanetary disturbances, geomagnetic activity indices, etc.) are substantially different for the above-mentioned groups. Most likely, these differences are caused by different sources of solar wind disturbances.  相似文献   

4.
Based on the multiplied neutron registration with the Magadan neutron monitor, the parameters of the spectrum of variations in the cosmic ray hardness and variation in geomagnetic cutoff rigidity for Forbush decreases and intensity increases, related to registration at a level of solar cosmic ray observation, have been determined using the spectrographic method. Results of an analysis indicate that the spectral index (represented in the power form) increases for Forbush decreases and decreases for increases in CR intensity. In the analyzed cases, geomagnetic cutoff rigidity decreases for intensity increases and Forbush decreases.  相似文献   

5.
The effect of solar and galactic cosmic ray variations on the duration of elementary synoptic processes (ESPs) in the Atlantic-European sector of the Northern Hemisphere has been studied. It has been found that solar cosmic ray (SCR) bursts result in an increase in the duration of ESPs, which belong to the western and meridional forms of atmospheric circulation. Forbush decreases in galactic cosmic rays (GCRs) are accompanied by an increase in the duration of ESPs, which belong to the meridional atmospheric circulation form, and in a decrease in the duration of ESPs, which are related to the western and eastern circulation forms. It has been assumed that the observed variations in the ESP duration are caused by the effect of short-period cosmic ray variations on the intensity of cyclonic processes at middle and high latitudes, namely, the regeneration of cyclones near the southeastern coast of Greenland after SCR bursts and the development of blocking anticyclones over the northeastern Atlantic, Europe, and Scandinavia during GCR Forbush decreases.  相似文献   

6.
We analyze variations in the rigidity spectrum of primary cosmic rays during Forbush effects recorded in cycles 20–24 of solar activity on the basis of data from the global network of neutron monitor stations processed by global survey. We investigate variations in the rigidity spectrum index of Forbush effects as a function of the solar activity level, phases of the effect, polarity the total magnetic field of the Sun, type and parameters of the source of cosmic ray modulation, etc. Comprehensive analysis of our results revealed regularities in the dynamics of the energy spectrum of galactic cosmic rays that reflect the dynamic processes occurring in the interplanetary space.  相似文献   

7.
Coronal mass ejections (CMEs) not only produce Forbush effects but contribute to long-term modulations of cosmic rays. That makes coronal ejections the main sporadic manifestations of the solar activity, which should be considered in modulation models. In this paper, a new version of the CME-index is proposed based on a comparison of the data from satellite coronographs with Forbush effects and long-term variations of cosmic rays.  相似文献   

8.
Variations in the cosmic ray density during the initial phase of the Forbush effect during the first hours after the arrival of the interplanetary shock wave have been studied with the use of data on variations in the cosmic ray density with a rigidity of 10 GV obtained by the global survey method by the world network of neutron monitors in 1957?2012. It is found that behavior of this parameter after the arrival of the shock wave demonstrates high variability. A small (~1/5 of total number), though distinct, group of Forbush effects, in which the density of the cosmic ray increases (not decreases) after the arrival of the shock wave, is defined. As a whole, the initial variation in cosmic ray density is correlated with the Forbush effect magnitude and the strength of the associated geomagnetic disturbance.  相似文献   

9.
Geomagnetism and Aeronomy - Forbush decreases of cosmic rays are caused by two types of solar sources: coronal holes and coronal mass ejections. In some cases, the identification of the solar...  相似文献   

10.
The time variations in the galactic cosmic ray (GCR) intensity at Apatity stations have been compared to the amplitude of the first Schumann resonance (as an indicator of the global thunderstorm activity power) for 12 cases of Forbush decreases in GCRs. A performed analysis indicated that the amplitude of the first Schumann resonance decreased only once during a Forbush decrease in GCRs as compared to the quiet conditions (during the strongest event in January 2005). In the remaining cases, a statistically significant effect was not observed.  相似文献   

11.
This paper addresses observed variations in cosmic ray (CR) intensity, the interplanetary magnetic field (IMF), the solar wind (SW) turbulence energy spectrum, and the energy spectrum index of Forbush decreases in the 20th–23rd solar cycles. Unlike the previous three cycles, there are some distinctive features in the 23rd solar cycle. The entire cycle shows a considerable increase in the index of the SW turbulence energy spectrum inclination and an substantially harder energy spectrum of Forbush decreases. The anomalously high flux of high-energy CRs and the anomalously low level of the IMF strength were recorded at the end of this cycle. The conclusion has been made that such unusual CR behavior is associated with a decrease in the degree of scattering in the resonance interaction between CR fluxes and SW inhomogeneities with spatial scales of ∼1012 cm.  相似文献   

12.
银河宇宙线是电离层D层的重要电离源之一,它的急剧变化会使D层电子密度发生改变,从而影响VLF波的夜间传播。本文根据在西安接收英国GBR台的VLF波(16kc/s)的相位变化,讨论了在有宇宙线暴(Forbush下降)和强磁暴时,中纬D层电子浓度的变化和相应的VLF波的相位漂移;并根据VLF的相位变化,估计了相应的宇宙线强度变化。由于D层中的宇宙线强度变化通常难于观测,通过VLF波的相位漂移来估计它,这是很有意义的。所以,VLF波的传播效应可能成为间接探测宇宙线强度变化的有用工具。  相似文献   

13.
A search has been made for short-term signatures in the global electric circuit of solar wind modulated inputs into the atmosphere, using atmospheric electricity observations made at Mauna Loa, Hawaii, in 1976–1984. The short-term events were Forbush decreases of the galactic cosmic ray flux (characterized by decreases in neutron monitor count rates); geomagnetic disturbances (characterized by the Ap index); and ring current changes (characterized by the Dst index). Each set of events was designated by a set of key days, which were used in superposed epoch analyses of the time-series of daily averages of the atmospheric electricity parameters.The observations consisted of measurements of air-earth current density, potential gradient, positive conductivity, and negative conductivity. The Mauna Loa observatory is at an altitude of 3.4 km in a relatively clean and dust free oceanic environment. The meteorologically-induced electrical noise there is less than at most other atmospheric electricity observatories, with the exception of high altitude sites on the polar ice caps. Nevertheless the noise level was still a problem even after making superposed epoch analyses using several tens of events. We find responses similar to those expected from solar wind inputs but of marginal statistical significance. Diurnal and annual variations were found to be well defined, and consistent with those found by others.  相似文献   

14.
One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar–terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.  相似文献   

15.
The data from terrestrial observations of cosmic rays at the global network of stations by the method of spectrographic global survey were used to analyze two Forbush decreases during the geomagnetic storms in March and June 2015. The spectra of cosmic ray variations, pitch angle anisotropy of cosmic rays at different phases of Forbush decrease development, and the changes in the planetary system of geomagnetic cutoff rigidities are presented. It is shown that, during the approximation of the spectra of variations by the power function of particle rigidity in the interval of 10–50 GV, the spectrum index is softer at the maximum modulation phase than during the phases of cosmic ray intensity decline and recovery. In the axisymmetric model of the bounded magnetosphere of the Earth, which takes into account the currents at the magnetopause and the ring current, the distance to the subsolar point and the radius of the ring current, as well as the contribution of the ring current to the changes in geomagnetic cutoff rigidity and to the Dst index during the studied events, are determined.  相似文献   

16.
We consider the behavior of anisotropy and density of galactic cosmic rays in the first hours of Forbush effects from 1957 to 2014 initiated by the arrival of a shock wave. It has been shown that, as early as the event commencement, the first harmonic of anisotropy tends to increase substantially and its direction changes significantly. The more is powerful the interplanetary disturbance, the greater are the changes. Based on changes in some parameters of anisotropy and density, we can estimate the heliolongitude of the disturbance source, as well as the further development of the Forbush effect and geomagnetic activity.  相似文献   

17.
The physics of solar forcing of the climate and long term climate change is summarized, and the role of energetic charged particles (including cosmic rays) on cloud formation and their effect on climate is examined. It is considered that the cosmic ray-cloud cover hypothesis is not supported by presently available data and further investigations (during Forbush decreases and at other times) should be analyzed to further examine the hypothesis. Another player in climate is lightning through the production of NOx; this greenhouse gas, water vapour in the troposphere (and stratosphere) and carbon dioxide influence the global temperature through different processes. The enhancement of aerosol concentrations and their distribution in the troposphere also affect the climate and may result in enhanced lightning activity. Finally, the roles of atmospheric conductivity on the electrical activity of thunderstorms and lightning discharges in relation to climate are discussed.  相似文献   

18.
The catalog of ground level enhancements of solar cosmic rays during cycles 21—23 of solar activity has been presented. The main properties, time distribution, and relation of these events to solar sources and proton enhancements observed on satellites have been studied.  相似文献   

19.
The diurnal variations in the electric conductivity, electric-field strength, and meteorological parameters in the near-Earth’s atmosphere during the solar events in October 21–31, 2003, have been studied. It has been indicated that the conductivity and electric-field strength strongly depend on the air temperature and humidity. It has been found that the conductivity increased for 2 days before the geomagnetic storm on October 29–30 as a result of the effect of solar cosmic rays and decreased during a Forbush decrease in galactic cosmic rays, which was accompanied by a corresponding increase in the electric-field strength. It has been found that the air temperature and humidity anomalously increased in the process of solar activity, which resulted in the formation of different clouds, including thunderclouds accompanied by thunderstorm processes and showers. Simultaneous disturbances of the regular meteorological processes, solar flare series, and emission intensification in the near ultraviolet band, and visible and infrared spectral regions make it possible to consider these processes as a source of additional energy inflow into the lower atmosphere.  相似文献   

20.
Variations in the cosmic ray intensity (specifically, Forbush effects) and in the geomagnetic cutoff rigidity planetary system during powerful geomagnetic disturbances in cycle 23 were studied based on worldwide station network data by the global spectrographic survey method. The cosmic ray variation spectra during these periods and the spectral indices of these variations when the spectrum was approximated by the power function of the particle rigidity varying from 10 to 50 GV during different Forbush effect development phases are presented. It was indicated that the spectral indices of cosmic ray variations during spectrum approximation by the power function of the particle rigidity are larger during the maximal modulation phase than during the cosmic ray intensity decline and recovery phases. The fact that the amplitude of the second harmonic of the cosmic ray pitch angle anisotropy did not increase on November 20, 2003, confirms that the Earth fell into a Sun-independent spheromark magnetic cloud. The increased amplitudes of the second harmonic of the cosmic ray pitch angle anisotropy during other Forbush effects in July 2000, March–April 2001, October 2003, and November 2004 indicate that the Earth was in the coronal mass ejection region, in which the interplanetary magnetic field structure was loop-like during these periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号