首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present observations of CLASS B2108+213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which we believe is emission from a lensing galaxy. 5-GHz VLBA observations reveal milliarcsecond-scale structure in the two lensed images that is consistent with gravitational lensing. Optical emission from the two lensed images and two lensing galaxies within the Einstein radius is detected in Hubble Space Telescope imaging. Furthermore, an optical gravitational arc, associated with the strongest lensed component, has been detected. Surrounding the system is a number of faint galaxies which may help explain the wide image separation. A plausible mass distribution model for CLASS B2108+213 is also presented.  相似文献   

2.
We present a series of high-resolution radio and optical observations of the CLASS gravitational lens system B1152+199 obtained with the Multi-Element Radio-Linked Interferometer Network, Very Long Baseline Array and Hubble Space Telescope . Based on the milliarcsecond-scale substructure of the lensed radio components and precise optical astrometry for the lensing galaxy, we construct models for the system and place constraints on the galaxy mass profile. For a single galaxy model with surface mass density  Σ(r)∝r− β   , we find that  0.95 β 1.21  at 2 σ confidence. Including a second deflector to represent a possible satellite galaxy of the primary lens leads to slightly steeper mass profiles.  相似文献   

3.
We report the discovery of a new double-image gravitational lens system, B1030 + 074, which was found during the Jodrell Bank–VLA Astrometric Survey (JVAS). We have collected extensive radio data on the system using the VLA, MERLIN, the EVN and the VLBA, and optical observations using WFPC2 on the HST . The lensed images are separated by 1.56 arcsec and their flux density ratio at centimetric wavelengths is approximately 14:1, although the ratio is slightly frequency-dependent and the images appear to be time-variable. The HST pictures show both the lensed images and the lensing galaxy close to the weaker image. The lensing galaxy has substructure which could be a spiral arm or an interacting galaxy. We have modelled B1030 + 074 using a singular isothermal ellipsoid which yields a time delay of 156/ h 50 d. This lens is likely to be suitable for the measurement of the Hubble constant.  相似文献   

4.
Central gravitational image detection is very important for the study of the mass distribution of the inner parts (∼100 pc) of lens galaxies. However, the detection of such images is extremely rare and difficult. We present a 1.7-GHz High Sensitivity Array (HSA) observation of the double-image radio lens system B1030+074. The data are combined with archive Very Long Baseline Array and global very long baseline interferometry (VLBI) observations, and careful consideration is given to the effects of noise, clean ing and self-calibration. An upper limit is derived for the strength of the central image of 180 μJy (90 per cent confidence level), considerably greater than would have been expected on the basis of a simple analysis. This gives a lower limit of ∼103 for the ratio of the brightest image to the central image. For cusped models of lens mass distributions, we have made use of this non-detection to constrain the relation between inner power-law slope β of the lensing galaxy mass profile, and its break radius r b. For   r b > 130 pc  the power-law slope is required to be close to isothermal  (β > 1.8)  . A flatter inner slope is allowed if a massive black hole is present at the centre of the lensing galaxy, but the effect of the black hole is small unless it is ∼10 times more massive than that implied by the relation between black hole mass and stellar velocity dispersion. By comparing four epochs of VLBI observations, we also detected possible superluminal motion in the jet in the brighter image A. The B jet remains unresolved, as expected from a simple lens model of the system.  相似文献   

5.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

6.
We report the discovery of the most complex arcsec-scale radio gravitational lens system yet known. B1933+503 was found during the course of the CLASS survey and MERLIN and VLA radio maps reveal up to 10 components. Four of these are compact and have flat spectra; the rest are more extended and have steep spectra. The background lensed object appears to consist of a flat-spectrum core (quadruply imaged) and two compact 'lobes' symmetrically disposed relative to the core. One of the lobes is quadruply imaged while the other is doubly imaged. An HST observation of the system with the WFPC2 shows a galaxy with an axial ratio of 0.5, but none of the images of the background object is detected. A redshift of 0.755 has been measured for the lens galaxy.  相似文献   

7.
A new four-image gravitational lens system, B0712+472, has been discovered during the Cosmic Lens All-Sky Survey. This system consists of four flat-spectrum radio images that are also seen on a Hubble Space Telescope ( HST ) image, together with the lensing galaxy. We present MERLIN, VLA and VLBA maps and WHT spectra of the system as well as the HST images. The light distribution of the lensing galaxy is highly elongated and so too is the mass distribution deduced from modelling. We suggest a redshift of ∼1.33 for the lensed object; the lens redshift will require further investigation. The discovery of this new system further increases the ratio of four-image to two-image lens systems currently known, exacerbating problems of required ellipticity of matter distributions in lensing galaxies.  相似文献   

8.
We use large volume, high resolution, N -body simulations of three different ΛCDM models, with different clustering strengths, to generate dark-matter halo merging histories. Over the reliable range of halo masses, roughly galaxy groups to rich clusters of galaxies, we quantify the number density of major mergers for two different time intervals and compare them with analytic predictions based on the extended Press–Schechter theory.  相似文献   

9.
We study the formation of tidal tails in pairs of merging disc galaxies with structural properties motivated by current theories of cold dark matter (CDM) cosmologies. In a recent study, Dubinski, Mihos & Hernquist showed that the formation of prominent tidal tails can be strongly suppressed by massive and extended dark haloes. For the large halo-to-disc mass ratio expected in CDM cosmologies their sequence of models failed to produce strong tails like those observed in many well-known pairs of interacting galaxies. In order to test whether this effect can constrain the viability of CDM cosmologies, we construct N ‐body models of disc galaxies with structural properties derived in analogy to the recent analytical work of Mo, Mao & White. With a series of self-consistent collisionless simulations of galaxy–galaxy mergers we demonstrate that even the discs of very massive dark haloes have no problems developing long tidal tails, provided the halo spin parameter is large enough. For our class of models, the halo-to-disc mass ratio is not a good indicator of the ability to produce tails. Instead, the relative size of disc and halo or, alternatively, the ratio of circular velocity to local escape speed at the half mass radius of the disc is a more useful criterion. This result holds in all CDM models. While tidal tails can provide useful information on the structure of galaxies, it thus appears unlikely that they are able to constrain the values of the cosmological parameters within these models.  相似文献   

10.
We investigate the properties of satellite galaxies formed in N -body/SPH simulations of galaxy formation in the ΛCDM cosmology. The simulations include the main physical effects thought to be important in galaxy formation and, in several cases, produce realistic spiral discs. In total, a sample of nine galaxies of luminosity comparable to the Milky Way was obtained. At magnitudes brighter than the resolution limit,   MV =−12  , the luminosity function of the satellite galaxies in the simulations is in excellent agreement with data for the Local Group. The radial number density profile of the model satellites, as well as their gas fractions also match observations very well. In agreement with previous N -body studies, we find that the satellites tend to be distributed in highly flattened configurations whose major axis is aligned with the major axis of the (generally triaxial) dark halo. In two out of three systems with sufficiently large satellite populations, the satellite system is nearly perpendicular to the plane of the galactic disc, a configuration analogous to that observed in the Milk Way. The discs themselves are perpendicular to the minor axis of their host haloes in the inner parts, and the correlation between the orientation of the galaxy and the shape of the halo persists even out to the virial radius. However, in one case the disc's minor axis ends up, at the virial radius, perpendicular to the minor axis of the halo. The angular momenta of the galaxies and their host halo tend to be well aligned.  相似文献   

11.
We explain in simple terms how the build-up of dark haloes by merging compact satellites, as in the cold dark matter (CDM) cosmology, inevitably leads to an inner cusp of density profile  ρ∝ r −α  with  α≳ 1  , as seen in cosmological N -body simulations. A flatter halo core with  α < 1  exerts on the satellites tidal compression in all directions, which prevents the deposit of stripped satellite material in the core region. This makes the satellite orbits decay from the radius where  α∼ 1  to the halo centre with no local tidal mass transfer, and thus causes a rapid steepening of the inner profile to  α > 1  . These tidal effects, the resultant steepening of the profile to a cusp, and the stability of this cusp to tandem mergers with compact satellites are demonstrated using N -body simulations. The transition at  α∼ 1  is then addressed using toy models in the limiting cases of impulse and adiabatic approximations and using tidal radii for satellites on radial and circular orbits. In an associated paper, we address the subsequent slow convergence from either side to an asymptotic stable cusp with  α≳ 1  . Our analysis thus implies that an inner cusp is enforced when small haloes are typically more compact than larger haloes, as in the CDM scenario, such that enough satellite material makes it intact into the inner halo and is deposited there. We conclude that a necessary condition for maintaining a flat core, as indicated by observations, is that the inner regions of the CDM satellite haloes be puffed up by about 50 per cent such that when they merge into a larger halo they would be disrupted outside the halo core. This puffing up could be due to baryonic feedback processes in small haloes, which may be stimulated by the tidal compression in the halo cores.  相似文献   

12.
One of the most direct routes for investigating the geometry of the Universe is provided by the numbers of strongly magnified gravitationally lensed galaxies as compared with those that are either weakly magnified or de-magnified. In the submillimetre waveband the relative abundance of strongly lensed galaxies is expected to be larger as compared with the optical or radio wavebands, both in the field and in clusters of galaxies. The predicted numbers depend on the properties of the population of faint galaxies in the submillimetre waveband, which was formerly very uncertain; however, recent observations of lensing clusters have reduced this uncertainty significantly and confirm that a large sample of galaxy–galaxy lenses could be detected and investigated using forthcoming facilities, including the FIRST and Planck Surveyor space missions and a large ground-based millimetre/submillimetre-wave interferometer array (MIA). We discuss how this sample could be used to impose limits on the values of cosmological parameters and the total density and form of evolution of the mass distribution of bound structures, even in the absence of detailed lens modelling for individual members of the sample. The effects of different world models on the form of the magnification bias expected in sensitive submillimetre-wave observations of clusters are also discussed, because an MIA could resolve and investigate images in clusters in detail.  相似文献   

13.
Many lens surveys have hitherto used observations of large samples of background sources to select the small minority which are multiply imaged by lensing galaxies along the line of sight. Recently surveys such as SLACS and OLS have improved the efficiency of surveys by pre-selecting double-redshift systems from SDSS. We explore other ways to improve survey efficiency by optimum use of astrometric and morphological information in existing large-scale optical and radio surveys. The method exploits the small position differences between FIRST radio positions of lensed images and the SDSS lens galaxy positions, together with the marginal resolution of some larger gravitational lens systems by the FIRST beam. We present results of a small pilot study with the VLA and MERLIN, and discuss the desirable criteria for future surveys.  相似文献   

14.
We use galaxy groups selected from the Sloan Digital Sky Survey (SDSS) together with mass models for individual groups to study the galaxy–galaxy lensing signals expected from galaxies of different luminosities and morphological types. We compare our model predictions with the observational results obtained from the SDSS by Mandelbaum et al. for the same samples of galaxies. The observational results are well reproduced in a Λ cold dark matter (ΛCDM) model based on the Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr data, but a ΛCDM model with higher σ8, such as the one based on the WMAP 1-yr data, significantly overpredicts the galaxy–galaxy lensing signal. We model, separately, the contributions to the galaxy–galaxy lensing signals from different galaxies: central versus satellite, early type versus late type and galaxies in haloes of different masses. We also examine how the predicted galaxy–galaxy lensing signal depends on the shape, density profile and the location of the central galaxy with respect to its host halo.  相似文献   

15.
We present observations of a new double-image gravitational lens system, ULAS J082016.1+081216, of image separation 2.3 arcsec and high (∼6) flux ratio. The system is selected from the Sloan Digital Sky Survey (SDSS) spectroscopic quasar list using new high-quality images from the UKIRT (United Kingdom Infrared Telescope) Deep Sky Survey (UKIDSS). The lensed quasar has a source redshift of 2.024, and we identify the lens galaxy as a faint red object of redshift  0.803 ± 0.001  . Three other objects from the UKIDSS survey, selected in the same way, were found not to be lens systems. Together with the earlier lens found using this method, the SDSS–UKIDSS lenses have the potential to significantly increase the number of quasar lenses found in SDSS, to extend the survey to higher flux ratios and lower separations, and to give greater completeness which is important for statistical purposes.  相似文献   

16.
We present new observations of the gravitational lens (GL) system B1600+434, strongly suggesting that the lens is an edge-on spiral galaxy. These observations are used to constrain the mass model of the system, in particular the oblateness and velocity dispersion of the dark matter halo around the lensing galaxy. From an analytical model we find a lower limit on the halo oblateness q halo=( c/a )ρ≳0.4; more detailed numerical models give a lower limit of q halo≳0.5. We determine an average halo velocity dispersion of σhalo=190±15 km s−1 over all non-singular isothermal elliptical (NIE) halo models. Constraining the models to larger and more massive discs decreases this average by only 10 km s−1. A lower limit of σhalo≳150 km s−1 is found, even for disc masses larger than the mass inside the Einstein radius. This lower limit indicates the need for a massive dark matter halo, contributing at least half of the mass inside the Einstein radius. Time-delay calculations give (54±3)/ h 50 d for the NIE halo model and (70±4)/ h 50 d for the modified Hubble profile (MHP) halo model. Although the time delay for both NIE and MHP halo models is well constrained on our parameter grid, it strongly depends on the halo surface density profile. We furthermore find that the presence of a flat luminous mass distribution can severely alter the statistical properties of the lens.  相似文献   

17.
Gravitationally lensed quasars can be discovered as a by-product of galaxy redshift surveys. Lenses discovered spectroscopically in this way should require less observational effort per event than those found in dedicated lens surveys. Further, the lens galaxies should be relatively nearby, facilitating a number of detailed observations that are impossible for the more common high-redshift lenses. This is epitomized by the wide range of results that have been obtained from Q 2237+0305, which was discovered as part of the Center for Astrophysics redshift survey, and remains the only quasar lens discovered in this way. The likelihood of this survey yielding a lens is calculated to be ∼0.03, which is an order of magnitude larger than previous estimates due to two effects. First, the quasar images themselves increase the observed flux of the lens, so that lens galaxies up to a magnitude fainter than the nominal survey limit must be included in the calculation. Secondly, it is possible for lensed quasars with extremely faint deflectors to enter the survey due to the extended morphology of the multiple images. Extrapolating these results to future surveys, the 2 degree Field galaxy redshift survey should contain between 10 and 50 lenses and the Sloan Digital Sky Survey should yield between 50 and 300 lenses, depending on the cosmological model and the observing conditions.  相似文献   

18.
We compare orbits in a thin axisymmetric disc potential in Modified Newtonian Dynamics (MOND) with those in a thin disc plus near-spherical dark matter halo predicted by a ΛCDM cosmology. Remarkably, the amount of orbital precession in MOND is nearly identical to that which occurs in a mildly oblate CDM Galactic halo (potential flattening   q = 0.9  ), consistent with recent constraints from the Sagittarius stream. Since very flattened mass distributions in MOND produce rounder potentials than in standard Newtonian mechanics, we show that it will be very difficult to use the tidal debris from streams to distinguish between a MOND galaxy and a standard CDM galaxy with a mildly oblate halo.
If a galaxy can be found with either a prolate halo or one that is more oblate than   q ∼ 0.9  this would rule out MOND as a viable theory. Improved data from the leading arm of the Sagittarius dwarf – which samples the Galactic potential at large radii – could rule out MOND if the orbital pole precession can be determined to an accuracy of the order of  ±1°  .  相似文献   

19.
We have discovered a radio source (B2114+022) with a unique structure during the course of the JVAS gravitational lens survey. VLA, MERLIN, VLBA and MERLIN+EVN radio maps reveal four compact components, in a configuration unlike that of any known lens system, or, for that matter, any of the ∼15 000 radio sources in the JVAS and CLASS surveys. Three of the components are within 0.3 arcsec of each other while the fourth is separated from the group by 2.4 arcsec. The widest separation pair of components have similar radio structures and spectra. The other pair also have similar properties. This latter pair have spectra which peak at ∼5 GHz. Their surface brightnesses are much lower than expected for synchrotron self-absorbed components.
Ground-based and Hubble Space Telescope optical observations show two galaxies ( z =0.3157 and 0.5883) separated by 1.25 arcsec. The lower redshift galaxy has a post-starburst spectrum and lies close to, but not coincident with, the compact group of three radio components. No optical or infrared emission is detected from any of the radio components down to I =25 and H =23 . We argue that the most likely explanation of the B2114+022 system is that the post-starburst galaxy, assisted by the second galaxy, lenses a distant radio source producing the two wide-separation images. The other two radio components are then associated with the post-starburst galaxy. The combination of the angular sizes of these components, their radio spectra and their location with respect to their host galaxy still remains puzzling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号