首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; ~900–1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations—especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA—a remarkable, yet incompletely understood episode of Late Holocene climatic change.  相似文献   

2.
Water resource management requires knowledge of the natural variability in streamflow over multiple time scales. Reconstructions of streamflow derived from moisture-sensitive trees extend, in both time and magnitude, the variability provided by relatively short gage records. In this study, we present a network of 14 annual streamflow reconstructions, 300–600 years long, for gages in the Upper Colorado and South Platte River basins in Colorado generated from new and existing tree-ring chronologies. Gages for the reconstruction were selected on the basis of their importance to two of the largest Colorado Front Range water providers, who provided the natural flow data for the calibration with tree-ring data. The reconstruction models explain 63–76% of the variance in the gage records and capture low flows particularly well. Analyses of the reconstructions indicate that the 20th century gage record does not fully represent the range of streamflow characteristics seen in the prior two to five centuries. Multi-year drought events more severe than the 1950s drought have occurred, notably in the 19th century, and the distribution of extreme low flow years is markedly uneven over the past three centuries. When the 14 reconstructions are grouped into Upper Colorado, northern South Platte, and southern South Platte regional flow reconstructions, the three time series show a high degree of coherence, but also time-varying divergences that may reflect the differential influence of climatic features operating in the western U.S. These reconstructions are currently being used by water managers to assess the reliability of water supply systems under a broader range of conditions than indicated by the gage records alone.  相似文献   

3.
Detailed records of past climatic changes, especially those related to water balance, can be used to study regional scale climatic changes associated with both natural and anthropogenic causes. Such ancient records are available from various locations around the globe. The four records presented here have sufficient time resolution to demonstrate short-lived global oscillations in parameters related to water balance during the last 7,000 y. The data indicate that sub-Milankovitch climatic events are not restricted to times of major climatic transitions but occurred throughout the Holocene. Most of the past changes due to natural variability are at least of the same order of magnitude as those predicted by various models to occur during the next century.  相似文献   

4.
High-resolution sedimentary paleoclimate proxy records offer the potential to expand the detection and analysis of decadal- to centennial-scale climate variability during recent millennia, particularly within regions where traditional high-resolution proxies may be short, sparse, or absent. However, time uncertainty in these records potentially limits a straightforward objective identification of broad-scale patterns of climate variability. Here, we describe a procedure for identifying common patterns of spatiotemporal variability from time uncertain sedimentary records. This approach, which we term Monte Carlo Empirical Orthogonal Function analysis, uses iterative age modeling and eigendecomposition of proxy time series to isolate common regional patterns and estimate uncertainties. As a test case, we apply this procedure to a diverse set of time-uncertain lacustrine proxy records from East Africa. We also perform a pseudoproxy experiment using climate model output to examine the ability of the method to extract shared anomalies given known signals. We discuss the advantages and disadvantages of our approach, including possible extensions of the technique.  相似文献   

5.
Existing multi-proxy climate reconstruction methods assume the suitably transformed proxy time series are linearly related to the target climate variable, which is likely a simplifying assumption for many proxy records. Furthermore, with a single exception, these methods face problems with varying temporal resolutions of the proxy data. Here we introduce a new reconstruction method that uses the ordering of all pairs of proxy observations within each record to arrive at a consensus time series that best agrees with all proxy records. The resulting unitless composite time series is subsequently calibrated to the instrumental record to provide an estimate of past climate. By considering only pairwise comparisons, this method, which we call PaiCo, facilitates the inclusion of records with differing temporal resolutions, and relaxes the assumption of linearity to the more general assumption of a monotonically increasing relationship between each proxy series and the target climate variable. We apply PaiCo to a newly assembled collection of high-quality proxy data to reconstruct the mean temperature of the Northernmost Atlantic region, which we call Arctic Atlantic, over the last 2,000 years. The Arctic Atlantic is a dynamically important region known to feature substantial temperature variability over recent millennia, and PaiCo allows for a more thorough investigation of the Arctic Atlantic regional climate as we include a diverse array of terrestrial and marine proxies with annual to multidecadal temporal resolutions. Comparisons of the PaiCo reconstruction to recent reconstructions covering larger areas indicate greater climatic variability in the Arctic Atlantic than for the Arctic as a whole. The Arctic Atlantic reconstruction features temperatures during the Roman Warm Period and Medieval Climate Anomaly that are comparable or even warmer than those of the twentieth century, and coldest temperatures in the middle of the nineteenth century, just prior to the onset of the recent warming trend.  相似文献   

6.
Annually resolved ice core records from different regions over the Greenland ice sheet (GrIS) are used to investigate the spatial and temporal variability of calcium (Ca2+, mainly from mineral dust) and sodium (Na+, mainly from sea salt) deposition. Cores of high common inter-annual variability are grouped with an EOF analysis, resulting in regionally representative Ca2+ and Na+ records for northeastern and central Greenland. Utilizing a regression and validation method with ERA-40 reanalysis data, these common records are associated with distinct regional atmospheric circulation patterns over the North American Arctic, Greenland, and Central to Northern Europe. These patterns are interpreted in terms of transport and deposition of the impurities. In the northeastern part of the GrIS sea salt records reflect the intrusion of marine air masses from southeasterly flow. A large fraction of the Ca2+ variability in this region is connected to a circulation pattern suggesting transport from the west and dry deposition. This pattern is consistent with the current understanding of a predominantly Asian source of the dust deposited over the GrIS. However, our results also indicate that a significant fraction of the inter-annual dust variability in NE and Central Greenland is determined by the frequency and intensity of wet deposition during the season of high atmospheric dust loading, rather than representing the variability of the Asian dust source and/or long-range transport to Greenland. The variances in the regional proxy records explained by the streamfunction patterns are high enough to permit reconstructions of the corresponding regional deposition regimes and the associated circulation patterns.  相似文献   

7.
我国西部地区过去2000年降水变化研究主要进展   总被引:2,自引:2,他引:2  
梁有叶  张德二 《气象科技》2004,32(3):137-142
概述最近10年来利用多种古气候代用记录研究我国西部地区距今2000年时段的降水(湿度)变化的主要进展。这些代用记录包括冰芯、树木年轮、湖泊沉积、黄土地层沉积和洞穴石笋等。综述利用这些代用资料建立的我国西部地区各地点的过去降水(湿度)气候序列,并对其所用方法、序列的分辨率等问题逐一说明。  相似文献   

8.
We review the century time scale climatic variability that is observed in high-resolution proxy data records covering the past 10 000 yr. Cyclic variations with time scales ranging from 50 to 400 yr occur in oxygen isotope ratios derived from ice cores, tree-ring index series, pollen records and sea-ice extents. Century time scale cycles can also be identified in some biological and historical records and in long-term instrumental observations. In order to appreciate the century scale cycles in the context of climatic variability in general, a brief survey of all climatic time scales is presented.The traditional interpretation that decadal-to-century scale fluctuations in the climate system are externally forced, e.g. by variations in solar properties, is questioned. A different mechanism for these fluctuations is proposed on the basis of recent findings of numerical models of the ocean's thermohaline circulation. The results indicate that this oceanic circulation exhibits natural variability on the century time scale which produces oscillations in the ocean-to-atmosphere heat flux. Although global in extent, these fluctuations are largest in the Atlantic Ocean.  相似文献   

9.
英国CRU高分辨率格点资料揭示的20世纪中国气候变化   总被引:29,自引:1,他引:29  
中国覆盖比较完整的台站观测始于1951年,1951年之前虽然有一些观测记录,但是残缺不全.所以要建立更长的气候序列就要吸收代用资料,但是代用资料可能与气候要素仅有一定程度的相关,不可能一一对应,因此应用代用资料重建的气候序列有一定的不确定性.英国East Anglia大学的Climatic Research Unit(简称CRU)通过整合已有的若干个知名数据库,重建了一套覆盖完整、高分辨率、且无缺测的月平均地表气候要素数据集,时间范围覆盖1901~2003年,空间为0.5°×0.5°经纬网格覆盖所有陆地.这套资料和中国已有的气候数据相比具有如下优点: 第一,中国西部20世纪前半期非常缺少观测,CRU资料尽管包含插值带来的误差,经比较仍可作为有一定信度的参考; 第二,中国现有的百年温度序列只是年或季分辨率,而CRU资料达到月分辨率; 第三,建立这个序列仅使用观测结果,做统计内插,不包括代用资料所带来的不确定性.因此,CRU的序列与用代用资料补充得到的序列在资料方面有较大不同,比较这两个序列,不仅可以进一步确认中国气候变化的特征,也可以彼此校正.结果表明:(1)CRU资料反映的全国年平均温度年际变化和考虑代用资料重建的序列吻合得很好,相关系数达到0.84;(2)区域尺度上,两者在10个典型分区的气温变率也相当一致,相关整体保持在0.8左右,仅新疆西南部和西藏西北部两者差异较大;(3)CRU资料揭示的中国年总降水量在1951~2000年的变化与160站观测吻合,相关系数达到0.93;(4)CRU资料的中国东部四季降水量和重建资料十分一致,秋季一致性最好,相关0.93;(5)CRU资料和重建的序列比较一致地表现出中国温度和降水年代际变化的主要特征,其给出的20世纪20年代中国大旱和20世纪40年代中国高温的空间分布与作者过去的结论相一致.这表明,作者过去重建的中国气候序列有比较大的可靠性,而CRU资料也提供了新的信息,特别是在20世纪前半期和中国西部.  相似文献   

10.
The central route of China’s South-to-North Water Diversion Project would divert water from the Danjiangkou Reservoir basin (DRB) to Beijing beginning in the year 2014. The current main surface water source for Beijing is the Miyun Reservoir basin (MRB). The observed streamflows into the DRB and the MRB decreased significantly due to climatic variation and human activities from 1960 to 2005. The climate elasticity method is widely used to quantitatively separate the impacts of climatic variation and human activities on streamflow. One of the uncertainties of the method is that the impacts of changes in precipitation and potential evapotranspiration on streamflow are separated with the assumption that they are independent. However, precipitation and potential evapotranspiration are not totally independent. Aridity index, as the ratio between potential evapotranspiration and precipitation, could be considered as the representative indicator of climatic variation. In this study, the sensitivity of streamflow to aridity index is evaluated to assess the impact of climatic variation on streamflow in the DRB and the MRB. The result shows that streamflow in the MRB is more sensitive to climatic variation than that in the DRB. However, the effective impact of aridity index on streamflow is the product of the sensitivity and the change rate of aridity index. The attribution results show that change in aridity index contributed 68.8 % of the decrease in streamflow in the DRB while it contributed 31.5 % of the decrease in streamflow in the MRB. This indicated that the impact of climatic variation was the main reason of decrease in streamflow in the DRB while human activities such as increasing water consumption and land use change were the main reasons of decreasing streamflow in the MRB.  相似文献   

11.
The streamflow over the Yellow River basin is simulated using the PRECIS (Providing REgional Climates for Impacts Studies) regional climate model driven by 15-year (1979-1993) ECMWF reanalysis data as the initial and lateral boundary conditions and an off-line large-scale routing model (LRM). The LRM uses physical catchment and river channel information and allows streamflow to be predicted for large continental rivers with a 1°×1° spatial resolution. The results show that the PRECIS model can reproduce the general southeast to northwest gradient distribution of the precipitation over the Yellow River basin, The PRECIS- LRM model combination has the capability to simulate the seasonal and annual streamflow over the Yellow River basin. The simulated streamflow is generally coincident with the naturalized streamflow both in timing and in magnitude.  相似文献   

12.
Summary The present article summarizes the essential methods and results of an investigation which was carried out by the paleoclimatological working group of the Geographical Institute of the University of Würzburg from 1983–1989. The aim of this investigation was a seasonal scale reconstruction of the historical climate of Lower Franconia (southern Germany) using instrumental data, narrative sources and harvest records for wine, grain and hay as well as dendrological data (proxy data). Both method and data discussed and regional climate patterns within Franconia are presented.With 2 Figures  相似文献   

13.
This article introduces this special journal issue on climate change impacts on Sierra Nevada water resources and provides a critical summary of major findings and questions that remain open, representing future research opportunities. Some of these questions are long standing, while others emerge from the new research reported in the eight research papers in this special issue. Six of the papers study Eastern Sierra watersheds, which have been under-represented in the recent literature. One of those papers presents hydrologic projections for Owens Valley, benefiting from multi-decadal streamflow records made available by the Los Angeles Department of Water and Power for hydrologic model calibration. Taken together, the eight research papers present an image of localized climatic and hydrologic specificity that allows few region-wide conclusions. A source of uncertainty across these studies concerns the inability of the (statistically downscaled) global climate model results that were used to adequately project future changes in key processes including (among others) the precipitation distribution with altitude. Greater availability of regional climate model results in the future will provide research opportunities to project altitudinal shifts in snowfall and rainfall, with important implications to snowmelt timing, streamflow temperatures, and the Eastern Sierra’s precipitation-shadow effect.  相似文献   

14.
The problem of increasing the informativeness of climate projections in the Russian Arctic in order to meet the current economy needs is considered. The detailed estimates are presented of changes for the most important specialized indicators of the thermal and moisture regimes which characterize climatic impacts on the economic development of the Russian Arctic in the 21st century. The calculations are based on the data of numerical experiments with the regional climate model which were conducted for the Arctic region in the framework of the international CORDEX project. The high resolution of the model (50 km) and the consideration of mesoscale factors helped to detect significant spatial differences in the estimates of changes in the analyzed parameters which should be taken into account when adapting to climate change at the regional level.  相似文献   

15.
A large fraction of climatic varability on the Quaternary time scale can be explained by nonlinear interactions between the radiation balance of the global atmosphere-ocean system and the mass balance of Northern Hemisphere ice sheets. Recent analyses of paleoclimatic proxy data indicate a further important contribution to this variability from changes in deep-water formation occurring in the North Atlantic Subpolar Sea. We study the effects of these changes on variations in global temperature and ice volume characteristic of the late Quaternary. The novel framework of Boolean delay equations (BDEs) is used to formulate a conceptual model of the climatic system under study, and to analyze this formal model. Selfsustained oscillations in the intensity of the Atlantic Ocean's thermohaline circulation result from the interaction of sea-ice formation with the waxing and waning of continental ice sheets. The comparison of model results with paleoclimatic records suggests a considerable slowing down of the abyssal circulation during glacial episodes.  相似文献   

16.
We present future fire danger scenarios for the countries bordering the Mediterranean areas of Europe and north Africa building on a multi-model ensemble of state-of-the-art regional climate projections from the EU-funded project ENSEMBLES. Fire danger is estimated using the Canadian Forest Fire Weather Index (FWI) System and a related set of indices. To overcome some of the limitations of ENSEMBLES data for their application on the FWI System—recently highlighted in a previous study by Herrera et al. (Clim Chang 118:827–840, 2013)—we used an optimal proxy variable combination. A robust assessment of future fire danger projections is undertaken by disentangling the climate change signal from the uncertainty derived from the multi-model ensemble, unveiling a positive signal of fire danger potential over large areas of the Mediterranean. The increase in the fire danger signal is accentuated towards the latest part of the transient period, thus pointing to an elevated fire potential in the region with time. The fire-climate links under present and future conditions are further discussed building upon observed climate data and burned area records along a representative climatic gradient within the study region.  相似文献   

17.
Streamflow trends and climate linkages in the Zagros Mountains,Iran   总被引:1,自引:0,他引:1  
This paper examines trends in streamflow and their links with local climate in the Karkheh River and its major tributaries, which originate from the Zagros Mountains, Iran. Streamflow records from five mainstream stations for the period 1961–2001 were used to examine trends in a number of streamflow variables. The studied variables were mean annual and monthly flows, 1 and 7 days maximum and minimum flows, timing of the 1-day maxima and minima, and the number and duration of high and low flow pulses. Similarly, the precipitation and temperature data from seven climate stations for the period from 1950s to 2003 were used to examine trends in climatic variables and their correlation with the streamflow. The Spearman Rank test was used for the detection of trends and the correlation analysis was based on the Pearson method. The results reveal a number of significant trends in streamflow variables both increasing (e.g. December flows) and decreasing (e.g. May flows) for all stations. However, some trends were not spatially uniform. For example, decline in low flow characteristics were more significant in the upper parts of the basin, whereas increasing trends in floods and winter flows were noteworthy in the middle parts of the basin. Most of these trends could be attributed to precipitation changes. The results show that the decline in April and May precipitation causes the decline in the low flows while the increase in winter (particularly March) precipitation coupled with temperature changes lead to increase in the flood regime. The observed trends at the Jelogir station on the Karkheh River reflect the combined effect of the upstream catchments. The significant trends observed in a number of streamflow variables at Jelogir, 1-day maximum, December flow and low pulse count and duration, point to the changes in hydrological regime of the entire Karkheh River system and are attributed to the changes in climatic variables.  相似文献   

18.
The economics and crowded cities of north China play important roles in China’s overall economic development. Streamflow is a hot issue in ecohydrological studies, and research into changes in streamflow in north China is of great significance. In this study, the sensitivities of streamflow to the aridity index, precipitation, and potential evapotranspiration are evaluated to assess the impact of climatic variation in streamflow in north China. The results show that the average coefficient of sensitivity of streamflow to aridity index is ?2.24, and streamflow would decrease by 22.4 % with a 10 % increase in the aridity index. The average coefficients of sensitivity of streamflow to precipitation and potential evapotranspiration are 3.21 and ?2.21, respectively. A 10 % increase in precipitation or potential evapotranspiration would induce a 32.1 % increase or a 22.1 % decrease of streamflow, respectively. Basins with low streamflows would be more sensitive to climatic variation than basins with high streamflows.  相似文献   

19.
通过对小冰期研究文献进行综述,并对已发表的小冰期温度和降水数据进行综合对比分析,探讨小冰期时期中国气候特征的区域性.结果表明,小冰期在中国地区不同区域代用指标记录中均存在,但是小冰期的起讫及持续时间具有区域差异性,温湿配置也不尽相同.小冰期的起始时间主要呈现出由西向东推移的趋势,即青藏高原最早,华北地区次之而东部地区最晚.温湿配置的差异主要体现在东部季风区小冰期时期总体上是冷干的气候环境,而西部地区气候变化则呈现冷湿的气候特征.  相似文献   

20.
The design of stormwater infrastructure is based on an underlying assumption that the probability distribution of precipitation extremes is statistically stationary. This assumption is called into question by climate change, resulting in uncertainty about the future performance of systems constructed under this paradigm. We therefore examined both historical precipitation records and simulations of future rainfall to evaluate past and prospective changes in the probability distributions of precipitation extremes across Washington State. Our historical analyses were based on hourly precipitation records for the time period 1949–2007 from weather stations in and near the state’s three major metropolitan areas: the Puget Sound region, Vancouver (WA), and Spokane. Changes in future precipitation were evaluated using two runs of the Weather Research and Forecast (WRF) regional climate model (RCM) for the time periods 1970–2000 and 2020–2050, dynamically downscaled from the ECHAM5 and CCSM3 global climate models. Bias-corrected and statistically downscaled hourly precipitation sequences were then used as input to the HSPF hydrologic model to simulate streamflow in two urban watersheds in central Puget Sound. Few statistically significant changes were observed in the historical records, with the possible exception of the Puget Sound region. Although RCM simulations generally predict increases in extreme rainfall magnitudes, the range of these projections is too large at present to provide a basis for engineering design, and can only be narrowed through consideration of a larger sample of simulated climate data. Nonetheless, the evidence suggests that drainage infrastructure designed using mid-20th century rainfall records may be subject to a future rainfall regime that differs from current design standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号