首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the tectonic framework of central Japan, including the surrounding submarine areas, the space-time relationship between destructive inland earthquakes of magnitudesM 6.4 or greater and great offshore earthquakes along the Nankai trough was examined. From east to west, four tectonic lines are defined as lines linking active faults: the Itoigawa-Shizuoka tectonic line (ISTL), the Tsurugawan-Isewan tectonic line (TITL), the Hanaore-Kongo fault line (HKFL), and the Arima-Takatsuki tectonic line (ATTL). The TITL divides central Japan into the Chubu and Kinki districts, and probably extends southward to the Nankai trough. The Chubu district is subdivided into four blocks by boundary lines linking NW-SE trending active faults having left-lateral strike slip. In the Kinki district, N-S trending, active reverse, steep-dip faults are dominant in the triangular region north of the Median Tectonic line, between the TITL and HKFL, forming a basin-and-range province.

Starting from 1586 A.D., a seismic space-time sequence of high seismic activity in the Chubu district in which earthquake occurrence migrates from the eastern to western tectonic lines of central Japan was identified. The sequence also revealed that inland earthquakes preceded great offshore earthquakes which occurred along the Nankai trough. It was also found that a destructive earthquake tends to occur on the HKFL within 30 years after the occurrence on the TITL, and that the western Nankai trough generated great earthquakes ofM≥7.0 at intervals ranging from 8 to 49 years after the HKFL earthquakes. If the eastern Nankai trough is coupled with the western Nankai trough, a forthcoming greater earthquake measuringM 8.5 may be expected. Since such great earthquakes are always accompanied by large tsunamis, much attention should be focussed on possible tsunami disasters along the Pacific coast of central Japan.

Based on its tectonic structure, a tectonic model of central Japan is proposed. The seismic space-time sequence, which attempts to explain the cause of the sequential earthquake generation, is also discussed.  相似文献   


2.
Earthquake loss estimation of residential buildings in Pakistan   总被引:1,自引:0,他引:1  
Pakistan is an earthquake-prone region due to its tectonic setting resulting in high hazard with moderate-to-strong ground motions and vulnerability of structures and infrastructures, leading to the loss of lives and livelihood, property damage and economic losses. Earthquake-related disaster in Pakistan is a regular and serious threat to the community; however, the country lack tools for earthquake risk reduction through early warning (pre-earthquake planning), rapid response (prompt response at locations of high risk) and pre-financing earthquake risk (property insurance against disaster). This paper presents models for physical damageability assessment and socioeconomic loss estimation of structures in Pakistan for earthquake-induced ground motions, derived using state-of-the-art earthquake loss estimation methodologies. The methodologies are being calibrated with the site-specific materials and structures response, whereas the derived models are tested and validated against recent observed earthquakes in the region. The models can be used to develop damage scenario for earthquakes (assess damaged and collapsed structures, casualties and homeless) and estimate economic losses, i.e., cost of repair and reconstruction (for a single earthquake event as well as all possible earthquakes). The models can provide help on policy- and decision-making toward earthquake risk mitigation and disaster risk reduction in Pakistan.  相似文献   

3.
This article is devoted to evaluating destructive earthquakes (magnitude >6) of Iran and determining properties of their source parameters. First of all, a database of documented earthquakes has been prepared via reliable references and causative faults of each event have been determined. Then, geometric parameters of each fault have been presented completely. Critical parameters such as Maximum Credible Rupture, MCR, and Maximum Credible Earthquake, MCE, have been compiled based on the geometrical parameters of the earthquake faults. The calculated parameters have been compared to the maximum earthquake and the surface rupture which have been recorded for the earthquake faults. Also, the distance between the epicenter of documented earthquake events and their causative faults has been calculated (the distance was less than 20 km for 90% of the data). Then, the distance between destructive earthquakes (with the magnitude more than 6) and the nearest active fault has been calculated. If the estimated distance is less than 20 km and the mechanism of the active fault and the event are reported the same, the active fault will be introduced as a probable causative fault of that earthquake. In the process, all of the available geological, tectonic, seismotectonic maps, aerial geophysical data as well as remote sensing images have been evaluated. Based on the quality and importance of earthquake data, the events have been classified into three categories: (1) the earthquakes which have their causative faults documented, (2) the events with magnitude higher than 7, and (3) the events with the magnitude between 6 and 7. For each category, related maps and tables have been compiled and presented. Some important faults and events have been also described throughout the paper. As mentioned in this paper, these faults are likely to be in high seismic regions with potential for large-magnitude events as they are long, deep and bound sectors of the margins characterized by different deformation and coupling rates on the plate interface.  相似文献   

4.
Seismotectonics and seismicity of the Silakhor region, Iran   总被引:1,自引:0,他引:1  
This paper deals with seismotectonic and seismicity of the Silakhor region that shows high seismic activity in western Iran. Silakhor is a vast plain with several villages and cities of Dorud and Borujerd and a small town of Chalanchulan that were destroyed and/or damaged many times by large earthquakes. This paper addresses the historical and instrumental earthquakes and their causative faults, seismotectonic provinces and seismotectonic zones of the region. Available seismic data were normalized by means of time normalization technique that resulted in the magnitude-frequency relation for the Silakhor area and estimation of the return period of earthquakes with different magnitudes. Some active faults in this region include the Dorud fault, the main Zagros thrust, the Galehhatam fault, the Sahneh fault and others. Among them, the Dorud fault is an earthquake fault and is the cause for most of the large and intermediate earthquakes in the region. The return period of large earthquakes with magnitudes greater than 7.0 (Ms) is very low, however, the occurrence of destructive earthquakes is greater in the region than in the neighboring provinces. The study proves the high seismicity of this zone and it is required to develop an accurate national plan for future building and reinforcement of the existing buildings in this region.  相似文献   

5.
受环太平洋地震带影响,华北平原地区地震频发,尤其是处于中国首都经济圈的京津冀地区的地震事件备受关注。通过对历史文献资料及地震台网记录中的地震事件统计、分析,重建该地区地震事件历史并获取其潜在的空间分布特征及时间规律,对未来地震事件的早期预警具有重要参考意义。分析结果表明,公元前231年至公元2018年期间京津冀地区发生的1044起地震事件中,以有感地震和中强地震为主,小地震、强烈地震以及大地震发生频次较低。地震记录完整性分析结果表明,除小地震外,其他等级地震记录自公元1400年以来基本完整。在空间分布上,京津冀地区历史地震呈“T”字形分布,沿1条北西—南东走向地震带和1条北东—南西走向地震带分布。在时间上,京津冀地区地震事件呈现出阶段性的变化,在公元1480—1680年间以及1950年以来2个时间段内较为活跃,发生频率较高,频谱分析结果进一步表明地震记录存在45年的复发周期。在月际尺度上,地震事件同样存在季节性差异且多发于夏秋季节,同时地震密集区域在年内呈现出自西向东迁移的现象。最后,根据历史地震事件发生的时间规律,在未来一段时间内京津冀地区仍将处于地震活跃期,存在发生强震的风险。  相似文献   

6.
城市活动断裂探测的方法和技术   总被引:64,自引:0,他引:64  
发生在城市范围内的直下型大地震可能产生巨大的灾害 ,包括高的振动破坏和强的断裂地表错动。因此 ,城市范围内的直下型活动断裂和隐伏活动断裂探测及地震危险性和危害性评价是十分重要的。立足于城市环境复杂、污染重、干扰强的特点 ,文中介绍了城市活动断裂探测的主要方法 ,包括地质地貌、地球化学和地球物理方面的多种探测方法。在地质地貌方法中 ,最新断裂活动面的断错地质地貌制图及针对断裂新活动和古地震研究的钻探和槽探具有特别重要的意义 ,年轻地质体和地貌面年龄测定是一项关键技术 ;地球化学探查 ,尤其是多种气体测项在隐伏断裂初步定位中起到先锋作用 ;在各种地球物理探测中 ,浅层地震勘探起着关键作用 ,而在探查活动断裂深部背景和孕震可能性时 ,各种深地震探测方法是十分重要的。在城市活动断裂探测这一新的工作中 ,必须更多地强调和更好地做到地质地貌、地球化学和地球物理探测的结合 ,做到多种探测手段和勘探方法的综合运用 ,这样才能做好断裂定位、断裂活动性判定及分析断裂孕震条件工作。  相似文献   

7.
Although the effects of earthquakes in destruction found in archaeological excavations have been recognized for decades, their importance remains controversial. New measurements of motions and analysis of earthquakes on active geological faults substantially improve the explanation of often-observed, but rarely understood, repeated destruction revealed by these excavations. Ancient Armageddon (Megiddo), the single most excavated archaeological site in Israel, is a fascinating example of this. It is situated next to the Mt. Carmel-Gilboa fault system, which, according to recent geophysical measurements, is seismically active. Its past activity: (a) has created, over time, the topography that made Megiddo strategically so important; and (b) through episodic earthquakes destroyed Megiddo's walls and buildings repeatedly.

The accumulated fault motion created the Nahal Iron Pass, which controlled ancient traffic between Syria and Egypt. Megiddo's strategic location at this pass led to some of the greatest ancient battles fought in this region and was the reason for the maintenance of its fortifications. The recurrence of damaging earthquakes, possibly 3 to 4 per millennium, however, explains the repeated destruction of Megiddo–sometimes attributed, for lack of a better explanation, to unproved battles: e.g., King David's often assumed conquest and mindless destruction of Megiddo was actually a destructive earthquake in northern Israel that occurred at ~1000 B.C. Another earthquake at ~1400 B.C., which damaged many parts of the country, also destroyed Megiddo at that earlier time. Finally, the earthquake during the battle of the Apocalypse at Armageddon (Revelations 17:8-18) may well be a simple retrospective prophecy.  相似文献   

8.
本文通过对东南沿海地震背景和地震破坏性经济损失,结合国内外城市化进程中防震减灾经济性对比研究,认为地震破坏的负面效应所带来的经济损失十分巨大。因而必须加强防震减灾工作为保障城市化顺利发展服务。  相似文献   

9.
Seismicity of Gujarat   总被引:2,自引:2,他引:0  
Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M????6 in a region having three devastating earthquakes that occurred during 1819 (M w7.8), 1956 (M w6.0) and 2001 (M w7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M????6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6.  相似文献   

10.
2015尼泊尔大地震及喜马拉雅造山带未来地震趋势   总被引:1,自引:1,他引:0  
2015年4月25日尼泊尔Ms 8.1级大地震是发生在喜马拉雅造山带中段的低角度逆冲断层运动, 特点是震源很浅, 震中烈度达Ⅺ度, 震害严重。破裂带走向北西西—南东东, 穿越尼泊尔首都加德满都, 使首都建筑遭受严重破坏。该震是1934年以来尼泊尔最大地震, 标志着喜马拉雅带自1950年以来半个世纪的平静期已经结束。自2005年进入新活动期, 至2015年尼泊尔大地震发生已达到活动高潮。预计将持续十到几十年。根据历史地震资料分析, 今后可能沿喜马拉雅带走向发生纵向迁移, 将在喜马拉雅带东段发生更大的地震, 从而使地震高潮达到顶峰而结束, 可能对我国西藏东南、不丹和印度边界产生破坏。另外还可能沿着与喜马拉雅带走向垂直方向向北迁移(即横向迁移), 在几年之内即可在西藏、青海引起破坏性地震, 需要相关省市做好监测预报和防灾工作。   相似文献   

11.
The earthquake catalogue from 1964 to August 1991 is used to identify the times of increased probabilities (TIPs) of the earthquake mainshocks of magnitudes greater than or equal to 6·4 and are associated with the Indian convergent plate margins, in retrospect. In Pakistan and Indo-Burma regions, the analysis was repeated for magnitude threshold 6·2 and 7·0 respectively. All the earthquakes (except one in the Hindukush region and one in Indo-Burmese region) in Pakistan, Hindukush-Pamir, Himalaya and Indo-Burmese regions were preceded by the special activation and hence were predicted. Approximately 23 ± 10% of the total time (1970 to August 1991) is occupied by the TIPs in all the regions. The reasons for failure to predict the two earthquakes in these regions are discussed. Our analysis gives a better picture of the regionalization and the size of the space-time volume for the preparation of an earthquake. The high success ratio of the algorithm proves that it can be applied in this territory for further prediction in the real time, without any significant changes in its parameters.  相似文献   

12.
13.
Iran has long been known as one of the most seismically active areas of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. The Alborz region in the northern part of Iran is an active EW trending mountain belt of 100 km wide and 600 km long. The Alborz range is bounded by the Talesh Mountains to the west and the Kopet Dagh Mountains to the east and consists of several sedimentary and volcanic layers of Cambrian to Eocene ages that were deformed during the late Cenozoic collision. Several active faults affect the central Alborz. The main active faults are the North Tehran and Mosha faults. The Mosha fault is one of the major active faults in the central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated in the vicinity of Tehran city, this 150-km-long N100° E trending fault represents an important potential seismic source. For earthquake monitoring and possible future prediction/precursory purposes, a test site has been established in the Alborz mountain region. The proximity to the capital of Iran with its high population density, low frequency but high magnitude earthquake occurrence, and active faults with their historical earthquake events have been considered as the main criteria for this selection. In addition, within the test site, there are hot springs and deep water wells that can be used for physico-chemical and radon gas analysis for earthquake precursory studies. The present activities include magnetic measurements; application of methodology for identification of seismogenic nodes for earthquakes of M ≥ 6.0 in the Alborz region developed by International Institute of Earthquake Prediction Theory and Mathematical Geophysics, IIEPT RAS, Russian Academy of Science, Moscow (IIEPT&MG RAS); a feasibility study using a dense seismic network for identification of future locations of seismic monitoring stations and application of short-term prediction of medium- and large-size earthquakes is based on Markov and extended self-similarity analysis of seismic data. The establishment of the test site is ongoing, and the methodology has been selected based on the IASPEI evaluation report on the most important precursors with installation of (i) a local dense seismic network consisting of 25 short-period seismometers, (ii) a GPS network consisting of eight instruments with 70 stations, (iii) magnetic network with four instruments, and (iv) radon gas and a physico-chemical study on the springs and deep water wells.  相似文献   

14.
Landslides are one of the most widespread natural hazards in high mountain terrains such as the Himalayas, which are one of the youngest tectonically and seismically active mountain ranges in the world. The crustal movements along the longitudinal thrusts and transverse faults give rise to earthquakes and in turn initiate landslides in the region. In fact, in addition to various static factors causing landslides, earthquakes are one of the major causes of landslides. It is thus imperative to incorporate seismic factor also while carrying out landslide susceptibility zonation map preparation in a seismically active areas like Garhwal Himalayas. In this paper, a study on the effect of earthquakes on landslide susceptibility zonation has been demonstrated by taking Chamoli earthquake as an example.  相似文献   

15.
极震区的地震动与潜在震源区内重大工程安全   总被引:11,自引:4,他引:7  
潜在震源区是未来可能发生破坏性地震的震源所在地区 ,区内的地震属近场或直下型 ,其地震破坏和地震动特征相应于已发生地震的极震区。近期国内外诸多强烈地震的实际资料和相关研究成果表明 ,直下型地震不仅地震峰值加速度大 ,且竖向和水平峰值加速度比值也有别于远场地震的统计关系。文中从极震区岩土体破坏、地震动特点及地震地质灾害等方面对潜在震源区内的重大工程问题进行了探讨  相似文献   

16.
Abstract: The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes. This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation, water and land resources security demonstration and integrated assessments of geo-environmental suitability for reconstruction in alp and ravine with high magnitude earthquakes, which are applied in the worst-hit areas (12 counties). The integrated assessment shows that: (1) located in the Longmenshan fault zone, the evaluated area is of poor regional crust stability, in which the unstable and second unstable areas account for 79% of the total; (2) the geo-hazards susceptibility is high in the evaluation area. The spots of geo-hazards triggered by earthquake are mainly distributed along the active fault zone with higher distribution in the moderate and high mountains area, in which the areas of high and moderate susceptibility zoning accounts for 40.1% of the total; (3) geological security is poor in the evaluated area, in which the area of the unsuitable construction occupies 73.1%, whereas in the suitable construction area, the areas of geological security, second security and insecurity zoning account for 8.3%, 9.3% and 9.3% of the evaluated area respectively; (4) geo-environmental suitability is poor in the evaluated area , in which the areas of suitability and basic suitability zoning account for 3.5% and 7.3% of the whole evaluation area.  相似文献   

17.
The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction,traffic and electricity.It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes.This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation,water and land resources security demonstration ...  相似文献   

18.
薛艳  刘杰  尹继尧  宋治平 《地球科学》2012,37(1):191-198
分析了全球、环太平洋地震带(P系)和低纬度环球剪切带(E系)的地震活动特征, 并运用小波变换技术对地震活动周期成分进行了定量研究, 结果表明: (1)全球地震活动存在45.5 a和32.0 a的显著周期成分, P系为45.5 a, E系为30.9 a和47.5 a; (2)全球及两大构造系7.0级以上地震频度均显示30.0 a左右的周期特征, 但地震频度与全球8.5级以上特大地震活动是不同步的, 不能作为判定地震活跃期与平静期的依据, 频度变化可能反映全球尺度的某种活动对地震产生的影响; (3)全球地震具有50.0 a尺度的活跃期与平静期; 当前全球地震活动处于2004年开始的以8.5级以上地震活动为特点的大释放阶段, 这种状态还将持续数年; E系处于Mw≥7.8大震活跃期的尾声, 而2010年智利Mw=8.8地震可能标志着P系开始进入大释放阶段.   相似文献   

19.
龙门山南段构造变形及应力序列   总被引:2,自引:2,他引:0  
2008年5月12日的汶川大地震表明龙门山断裂带仍然是一个构造活动带,为达到防震减灾的目的,对龙门山进行深入研究显得非常必要。作者通过龙门山南段的怀远和雅安两条实测构造地质剖面,应用传统的构造解析法,结合构造带的分带讨论思想,对野外实测的褶皱、节理和断层等构造变形要素进行综合分析,确定出各构造带的变形和应力序列。中央断裂带构造变形次数达10次以上,其中以NW-SE向逆冲最多,部分为左旋逆冲或右旋逆冲。滑覆体构造变形序列达5次左右。前山断裂带的构造变形序列较少,约5次以上。  相似文献   

20.
中国活动构造与地震活动   总被引:56,自引:3,他引:56  
文中研究了中国活动构造与地震活动的关系 ,包括活动断裂、活动褶皱、活动盆地和活动块体与地震活动的关系。全部 8级、绝大部分 7~ 7.9级地震均发生在活动块体边界活动构造带内 ;但对内部有次级活动构造的块体而言 ,少数 7~ 7.9级地震和部分 6~ 6 .9级地震也可能发生在块体内部的活动构造带上。大地震与活动断裂、活动褶皱和活动盆地的关系十分紧密 ,70多次 7级以上地震的同震破裂带及其位移参数与活动构造完全一致 ,7~ 8级地震均发生在活动断裂、活动褶皱和活动盆地带内 ,仅个别地震由于发生在高原和高山区 ,情况不明 ,6~ 6 .9级地震则大约有 5 %~ 15 %发生在活动构造带外或者情况不明。由于中国各断块区应力环境的差别 ,各区活动构造变形和地震发震构造类型也有所不同 ,文中对不同构造区走滑型 ,逆断裂褶皱型和正断裂拉张型活动构造和地震发震构造模型作了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号