首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The local and regional structural pattern of volcanic edifices strongly controls the space distribution of electrical resistivity. Here we report on the structural context of the western part of the Las Cañadas caldera of Tenerife (LCC) thought to have initiated the formation of the caldera. Using a new dataset of 11 audiomagnetotelluric tensors we emphasize the resistivity distribution of Ucanca caldera and propose a major revision of its extension. We find that Ucanca caldera has a limited westwards extent and that El Cedro sector is a depression margin of the caldera. According to the extent of hydrothermalized rocks at the base of the LCC wall and the distribution of Pico Teide – Pico Viejo vents, we constrain the location and size of Ucanca caldera. The interpretation of these results also constrains the extension of the Icod Valley and proposes a headwall located below the Pico Teide – Pico Viejo Complex.  相似文献   

2.
Errors in the interpretation of clouds, fumarolic activity and forest fires as volcanic eruptions in Tenerife, mainly in relation with Teide volcano, are common in references by passing navigators and other eyewitness accounts from the fifteenth and sixteenth centuries. In the case of the most common, historical, multiple‐vent fissure eruptions in the Canaries, vent locations provided by these accounts are frequently uncertain or are clearly erroneous and often conflict with geological evidence. Significant examples are the general association of the latest eruption of Teide volcano, dated at 1150 ± 140 bp , with the reference made by Christopher Columbus in 1492 to an eruption ‘on the flanks of Teide’, which actually corresponds to an eruptive vent (Boca Cangrejo volcano) situated in the NW Rift, dated at 400 ± 110 bp . Similar conflicting vent locations occurred in the 1730–36 eruption of Lanzarote and the 1677 eruption of La Palma. This article considers the volcanic cones located in the Orotava Valley, erroneously assigned by Chevalier de Borda and Alexander von Humboldt to a 1430 ad eruption. Geological evidence and radiocarbon dating of charcoal underlying the lapilli, and 40Ar/39Ar dating of one of the lava flows, show that these volcanic cones and lavas correspond to an eruption that took place about 30 000 yr bp . Analysis of the influence of these erroneous ages for the recent volcanism of Tenerife shows an overestimation of eruptive hazards of this island.  相似文献   

3.
Pico, the youngest island of the Azores Archipelago (Portugal), is characterized by a central volcano and a 30‐km‐long fissure zone. Its eruption rate is the highest of the Azores islands, with more than 35 eruptions in the last 2000 years. Here, we estimate the lava‐flow hazard for Pico Island by combining the vent opening probability derived from the spatial distribution of eruptive fissures, the classes of expected eruptions inferred from the physical and chemical characteristics of historical eruptions, and the lava‐flow paths simulated by the MAGFLOW model. The most likely area to host new eruptions is along a WNW–ESE trend centred on the central volcano, with the highest hazard affecting the two main residential zones of Lajes do Pico and Madalena. Our analysis is the first attempt to assess the lava‐flow hazard for Pico Island, and may have important implications for decision‐making in territorial management and future land‐use planning.  相似文献   

4.
《Applied Geochemistry》2004,19(6):819-834
Spatial distribution of soil Hg, B and NH4 was investigated in the soils of Cañadas caldera, Canary Islands, in the summer of 1992. Soil Hg, B and NH4 were also studied over several transects intersecting structural features. Soil Hg concentration ranged from 10.83 to 45,000 μg kg−1 whereas those of B and NH4 ranged from 8.45 to 4512 μg kg−1 and from 0.31 to 181 mg kg−1, respectively. Probability plot analysis identified 3 geochemical populations for Hg and B whereas only 2 were detected for NH4. Multivariate analysis (cluster, factor and multiple regression analysis) was used to identify subtle geochemical characteristics of the groups and factors and to determine the relationship between Hg, B and NH4 and the soil secondary parameters. High soil Hg, B and NH4 concentrations are interpreted as being related to areas where a convection system has developed, coinciding with the most recent volcanic centers located along the basaltic rift zones and with the main features inside Cañadas caldera: Teide volcano and Roques de Garcı́a. Background levels of soil volatiles are present in locations where no indication of subsurface thermal activity occurs. Generally, the secondary controls on Hg, B and NH4 are subtle and are overwhelmed in areas characterized by subsurface geothermal activity.  相似文献   

5.
In 1972 UNESCO created the World Heritage List to 'preserve the world's superb natural and scenic areas and historic sites for the present and future generations of citizens of the entire world'. Nominated sites must be of 'outstanding universal value' and meet at least one of ten selection criteria, six cultural and four natural. Teide National Park (TNP) was inscribed in the World Heritage List in 2007 for its natural beauty and its 'global importance in providing evidence of the geological processes that underpin the evolution of oceanic islands' (Criteria vii and viii). The geological values rendering PNT an exceptional site are analysed in this article. Volcanism in Tenerife and TNP correspond to the Ocean Island Alkali Basalts (OIB), whereas the already nominated (1987) Hawaii Volcanoes National Park, from a different geodynamic setting, belongs to the Tholeiitic series (OIT). Both National Parks complement each other to represent the entire range of products, features and landscapes of oceanic islands. The main geological elements of this Park include Las Cañadas Caldera, one of the most spectacular, best exposed and accessible volcanic calderas on Earth, two active rifts, and two large felsic stratovolcanoes, Teide and Pico Viejo, rising 3718 m above sea level and around 7500 m above the ocean floor, together the third highest volcanic structure in the world after the Mauna Loa and Mauna Kea volcanoes on the island of Hawaii.  相似文献   

6.
Tenerife basically consists of three Miocene shield volcanoes, the Anaga, the Teno and Central shield, as well as the Pliocene Cañadas volcano. The temporal evolution and structural significance of each volcano with respect to the history of Tenerife is still a matter of debate. We present paleomagnetic results in order to enhance the view of the volcanic history of the Teno volcano by means of magnetostratigraphy. It is found that the initial subaerial phase shows reverse magnetizations throughout. After two major sector collapses, dominantly normally magnetized lavas extruded. Comparisons of observed magnetic polarities with the geomagnetic polarity timescale show that these volcanic activities occurred within 0.4 Myr between 6.3 and 5.9 Ma. Significantly younger flows, ~ 5.3 Myr old according to their radiometric age, revealed again normal polarity throughout. The absence of inversely magnetized lavas in-between the two normal periods indicates a volcanic hiatus or erosional phase. The evolutionary sequence and the estimated high production rates for the initial building phase are similar as would be expected for a hotspot volcano. The average geomagnetic field for 6.0 ± 0.2 Ma is close to an axial dipole field showing a slight far-sided/right-handed effect. The field strength, determined by Thellier-type intensity determinations, corresponds to a virtual axial dipole moment of 4.9 × 1022 A m2. This value is approximately half of the present day field strength, but similar to values obtained for the mid-Miocene. It also corresponds to the proposed tertiary low-field level of the geomagnetic dipole moment.  相似文献   

7.
Landsliding is a significant process on volcanic edifices, with individual events exceeding several cubic kilometres in volume. The causes of such mass movements and their relationship with volcanic activity are still poorly understood. Landslide events are an important factor in the evolution of volcanic islands such as Tenerife, where vertical and lateral collapses have occurred repeatedly. Subaerial and submarine processes related to landslide events strongly influence the morphology of the island. On Tenerife there are three very big valleys, Güimar, La Orotava and Icod, that have been created by large landslide events with ages ranging from Upper Pliocene to Middle Pleistocene. The landslides affect the northern flanks of the island and the slopes of a large central volcanic edifice, the Las Canadas volcano, which is truncated by the Las Canadas caldera, a multicyclic collapse depression, formed between 1.02 and 0.17 Ma. We have focused our studies on the potential for caldera collapse events to trigger large scale landslides. The available geological and morphological information has been incorporated into numerical models, which simulate the destabilising effects of a caldera collapse episode. The results of the numerical modelling indicate that processes associated with caldera collapse events can overcome the stabilising forces on the volcano flank and trigger landslides. We propose that caldera collapse events may have triggered large landslides on the slopes of the Las Canadas volcano.  相似文献   

8.
Kīlauea is the youngest of five basaltic shield volcanoes on the island of Hawai’i. It is located to the south‐east of the much larger Mauna Loa volcano, and rose above sea level about 100 ka ago. Kīlauea is one of the most monitored, and arguably the best understood volcanoes on Earth, providing scientists with a good understanding of its current eruption, in which magma rises from depth and is stored beneath its 4 × 3.2 km summit caldera in an underground reservoir. The reservoir is connected to a lava lake within a crater called Halema’uma’u, which is situated on the floor of the caldera. When magma drains from the summit area it travels in underground conduits and emerges on the flanks of the volcano at a rift zone, where it erupts through fissures. The magma is sometimes stored in other reservoirs along the way. This link between summit magma storage and fissure eruptions on the flanks has occurred thousands of times at many Hawai’ian volcanoes. The current eruptive episode is, however, a ‘once‐in‐a‐century’ show, because it is the first time since 1924 that fissure‐fed lava flow eruptions have been accompanied by significant explosive eruptions within Halema’uma’u Crater. This gives scientists a unique opportunity to use modern methods to understand exactly how such hazardous explosions happen at Kīlauea, a volcano that receives about 2 million visitors a year.  相似文献   

9.
The Bandas del Sur Formation preserves a Quaternary extra-calderarecord of central phonolitic explosive volcanism of the LasCañadas volcano at Tenerife. Volcanic rocks are bimodalin composition, being predominantly phonolitic pyroclastic deposits,several eruptions of which resulted in summit caldera collapse,alkali basaltic lavas erupted from many fissures around theflanks. For the pyroclastic deposits, there is a broad rangeof pumice glass compositions from phonotephrite to phonolite.The phonolite pyroclastic deposits are also characterized bya diverse, 7–8-phase phenocryst assemblage (alkali feldspar+ biotite + sodian diopside + titanomagnetite + ilmenite + nosean–haüyne+ titanite + apatite) with alkali feldspar dominant, in contrastto interbedded phonolite lavas that typically have lower phenocrystcontents and lack hydrous phases. Petrological and geochemicaldata are consistent with fractional crystallization (involvingthe observed phenocryst assemblages) as the dominant processin the development of phonolite magmas. New stratigraphicallyconstrained data indicate that petrological and geochemicaldifferences exist between pyroclastic deposits of the last twoexplosive cycles of phonolitic volcanism. Cycle 2 (0·85–0·57Ma) pyroclastic fall deposits commonly show a cryptic compositionalzonation indicating that several eruptions tapped chemically,and probably thermally stratified magma systems. Evidence formagma mixing is most widespread in the pyroclastic depositsof Cycle 3 (0·37–0·17 Ma), which includesthe presence of reversely and normally zoned phenocrysts, quenchedmafic glass blebs in pumice, banded pumice, and bimodal to polymodalphenocryst compositional populations. Syn-eruptive mixing eventsinvolved mostly phonolite and tephriphonolite magmas, whereasa pre-eruptive mixing event involving basaltic magma is recordedin several banded pumice-bearing ignimbrites of Cycle 3. Theperiodic addition and mixing of basaltic magma ultimately mayhave triggered several eruptions. Recharge and underplatingby basaltic magma is interpreted to have elevated sulphur contents(occurring as an exsolved gas phase) in the capping phonoliticmagma reservoir. This promoted nosean–haüyne crystallizationover nepheline, elevated SO3 contents in apatite, and possiblyresulted in large, climatologically important SO2 emissions. KEY WORDS: Tenerife; phonolite; crystal fractionation; magma mixing; sulphur-rich explosive eruptions  相似文献   

10.
Barrington shield volcano was active for 55 million years, based on basalt K–Ar and zircon fission track dating. Activity in the northeast, at 59 Ma, preceded more substantial activity between 55 and 51 Ma and more limited activity on western and southern flanks after 45 Ma. Eruptions brought up megacrystic gemstones (ruby, sapphire and zircon) throughout the volcanism, particularly during quieter eruptive periods. Zircon fission track dating (thermal reset ages) indicates gem‐bearing eruptions at 57, 43, 38, 28 and 4–5 Ma, while U–Pb isotope SHRIMP dating suggests two main periods of zircon crystallisation between 60 and 50 Ma and 46–45 Ma. Zircons show growth and sector twinning typical of magmatic crystallisation and include low‐U, moderate‐U and high‐U types. The 46 Ma high‐U zircons exhibit trace and rare‐earth element patterns that approach those of zircon inclusions in sapphires and may mark a sapphire formation time at Barrington. Two Barrington basaltic episodes include primary lavas with trace‐element signatures suggesting amphibole/apatite‐enriched lithospheric mantle sources. Other basalts less‐enriched in Th, Sr, P and light rare‐earth elements have trace‐element ratios that overlap those of HIMU‐related South Tasman basalts. Zircon and sapphire formation is attributed to crystallisation from minor felsic melts derived by incipient melting of amphibole‐enriched mantle during lesser thermal activity. Ruby from Barrington volcano is a metamorphic type, and a metamorphic/metasomatic origin associated with basement ultramafic bodies is favoured. Migratory plate/plume paths constructed through Barrington basaltic episodes intersect approximately 80% of dated Palaeogene basaltic activity (65–30 Ma) along the Tasman margin (27–37°S) supporting a migratory plume‐linked origin. Neogene Barrington activity dwindled to sporadic gem‐bearing eruptions, the last possibly marking a minor plume trace. The present subdued thermal profile in northeastern New South Wales mantle suggests future Barrington activity will be minimal.  相似文献   

11.
We present an updated geological evolution of Mount Etna volcano based on new 40Ar/39Ar age determinations and stratigraphic data integrating the previous K/Ar ages. Volcanism began at about 500 ka ago through submarine eruptions on the Gela–Catania Foredeep basin. About 300 ka ago fissure-type eruptions occurred on the ancient alluvial plain of the Simeto River forming a lava plateau. From about 220 ka ago the eruptive activity was localised mainly along the Ionian coast where fissure-type eruptions built a shield volcano. Between 129 and 126 ka ago volcanism shifted westward toward the central portion of the present volcano (Val Calanna–Moscarello area). Furthermore, scattered effusive eruptions on the southern periphery of Etna edifice occurred until about 121 ka ago. The stabilization of the plumbing system on the Valle del Bove area is marked by the building of two small polygenic edifices, Tarderia and Rocche volcanoes. Their eruptive activity was rather coeval ending 106 and 102 ka ago, respectively. During the investigated time-span volcanism in Etna region was controlled by a main E–W extensional tectonic related to the reactivation of Malta Escarpment fault system in eastern Sicily. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

12.
R. Vieira  C. Toro  V. Araa 《Tectonophysics》1986,130(1-4):249-257
In this study, the first results obtained in a gravimetric exploration in the Caldera of Teide, Tenerife, Canary Islands, are presented. The gravimetric anomalies observed permit us to deduce the existence of a double vault, with an important mass deficit centered in the southeast base of the volcano Teide that seems to support the hypothesis of a caldera collapse, at least for an important part of the present depression.  相似文献   

13.
Tenerife is the largest of the seven Tertiary to Recent volcanic islands that make up the Canary Archipelago. The island is composed of volcanics belonging to the basanitetrachyte-phonolite assemblage that characterises many Atlantic islands. The most voluminous development of intermediate and salic volcanics has been in the centre of the island where the Las Canadas volcanoes arose upon a basement shield composed mainly of basanite and ankaramite flows, tuffs and agglomerates. The initial post-shield activity built the Vilaflor volcanic complex (Lower and Upper Canadas Series) that originally covered much of the underlying shield volcanics. A vast collapse of the complex, probably during post-Pleistocene times, in the centre of the island has left a large semi-circular wall, and provides an excellent vertical section through the complex. Quaternary volcanism within the collapsed area has built the twin, central-type volcanoes, Viejo and Teide, both of which have attendant satellite vents. That part of the Vilaflor Complex exposed in Las Canadas, together with the Viejo and Teide volcanoes, comprise the Las Canadas volcanoes.Four distinct rock types can be recognised in these volcanoes, basanite, trachybasanite, plagioclase phonolite, and phonolite. Each rock type can be recognised chemically and mineralogically, but there is essentially a gradational series from basanite to phonolite that includes both aphyric and glomerophyric rocks. The volcanics are strongly undersaturated and sodic, and some of the phonolites are mildly peralkaline. Variations in degree of undersaturation, and trace element abundances indicate a number of cycles of activity which would be consistent with the known field relations.Forsteritic olivine occurs in the basanites and trachybasanites but is not a stable phase in the more salic volcanics. Clinopyroxene is ubiquitous, varying in composition from titanaugite in the basanites to slightly sodic augite in the phonolites. Strongly sodic pyroxene is restricted to the groundmass of the microcrystalline phonolites along with aenigmatite and a kataphoritic amphibole. Plagioclase is found only in the groundmass of the basanites, but andesine and potash-oligoclase are common phenocryst minerals in the trachybasanites and plagioclase phonolites respectively, whereas the characteristic feldspar of the phonolites is anorthoclase.The relatively smooth curves of major and trace element variation, the presence of accumulative volcanics at all stages of differentiation, zoning of the mineral phases, and the clustering of the phonolites around the low temperature trough in Petrogeny's Residua System, all indicate that the descent from basanite to phonolite has resulted from fractional crystallisation of a basanite parent magma. The trend of pyroxene crystallisation, and the fairly constant FeO/Fe2O3 ratio during fractionation indicate crystallisation under low PO2 conditions.  相似文献   

14.
The island of La Palma in the Canary Islands provides an excellent opportunity to examine the products of basaltic volcanism. In contrast to Tenerife, the volcanic activity of La Palma has been more effusive, and the island has largely escaped the impact of package tourism. The scenery is impressive, in particular the classic Caldera de Taburiente.  相似文献   

15.
We studied mechanisms of structural destabilization of ocean island flanks by considering the linkage between volcano construction and volcano destruction, exemplified by the composite Teno shield volcano on Tenerife (Canary Islands). During growth, Tenerife episodically experienced giant landslides, genetically associated with rifting and preferentially located between two arms of a three-armed rift system. The deeply eroded late Miocene Teno massif allows insights into the rifting processes, the failure mechanisms and related structures. The semicircular geometry of palaeo-scarps and fracture systems, breccia deposits and the local dike swarm reconfigurations delineate two clear landslide scarp regions. Following an earlier collapse of the older Los Gigantes Formation to the north, the rocks around the scarp became fractured and intruded by dikes. Substantial lava infill and enduring dike emplacement increased the load on the weak scarp and forced the flank to creep again, finally resulting in the collapse of the younger Carrizales Formation. Once more, the changing stress field caused deformation of the nearby rocks, a fracture belt formed around the scarp and dikes intruded into new (concentric) directions. The outline, size and direction of the second failed flank of Teno very much resembles the first collapse. We suggest structural clues concerning mechanisms of recurrent volcano flank failure, verifying the concept that volcano flanks that have failed are prone to collapse again with similar dimensions.  相似文献   

16.
长白山天池老虎洞期火山活动地质特征及成因意义   总被引:6,自引:0,他引:6       下载免费PDF全文
郑祥身  许湘希 《地质科学》1998,33(4):426-434
长白山天池火山老虎洞期火山活动发生在更新世晚期白头山组碱性粗面岩喷发之后,火山活动的产物主要为玄武岩质火山碎屑岩和少量玄武岩质或粗面岩质熔岩;老虎洞组火山岩的稀土元素地球化学特征介于早期玄武岩和气象站组碱流岩两者之间,将二者有机地联系在一起,使整个天池火山岩的演化趋势更加清晰。老虎洞组火山岩的存在充分证明了天池火山的粗面岩类与该区早期的大量玄武岩具有成因联系。长白山天池火山活动的成因并非简单地用西太平洋板块的俯冲作用所能解释的。  相似文献   

17.
Bezymianny is an active andesitic volcano of the Klyuchevskaya group, and its eruptive products are xenolith- and enclave-bearing basaltic andesites and dacites. Here we report the first occurrence of clinopyroxene-plagioclase high-potassium basaltic trachyandesite xenoliths (51.84-53.00 wt.% SiO2, 0.45-1.95 wt.% K2O) crystallized in the temperature range 1120-840 °C in products of modern eruptions (2007, 2011, 2012). Basaltic trachyandesite differ systematically in petrologic and geochemical characteristics from all previously studied rocks from the Bezymianny volcano. They correspond to the clinopyroxene-plagioclase porphyry rocks from the foot of the Tolbachik volcanoes.  相似文献   

18.
中国东北地区新生代火山活动的构造背景   总被引:5,自引:1,他引:4  
王瑜  李春风  陈洪洲 《地质论评》1999,45(7):180-189
中国东北地区新生代以玄武岩为主的喷发经历了60~29 Ma、25~15 Ma、<2 Ma三期及不同喷发期之间的过渡阶段,而每一期又可以分为若干旋回。火山作用形成于不同的构造部位,沿断裂和非断裂分布的玄武岩均有存在,且与不同时期的大陆边缘构造演化相匹配。不同的构造背景下火山活动的分布也不同,且具明显的迁移性。构造环境体现为非造山大陆边缘张裂隙、上地幔上隆的陆内拉张环境、陆内非造山环境等特征。上新世晚期—更新世以来的火山活动与中国西南部地区的大陆板块间的碰撞作用没有关系。  相似文献   

19.
Potassium‐argon ages on alkali feldspar phenocrysts from trachyte lavas and on trachyandesites of the Cape Hillsborough Beds, which crop out north of Mackay, Queensland, yield concordant ages of 32.5 ± 0.4 m.y. This age is Early Oligocene and by correlation provides much firmer control than previously available on the age of the sediments deposited in the Hillsborough Basin. Isotopic ages on an altered biotite and on alkali feldspar from the Mount Jukes Syenite Complex, to the southwest of Cape Hillsborough, are indistinguishable from those measured on the Cape Hillsborough Beds, suggesting a possible genetic relationship between the lavas and the syenite intrusions. Present evidence indicates that Cainozoic volcanism in Queensland occurred in two main eruptive episodes. The earlier episode covered much of the Oligocene and its products are widespread in the southern half of the State. After a long hiatus of little or no volcanism there followed a later episode of volcanism in the Pliocene and Quaternary when widespread basaltic eruptions occurred, mainly in North Queensland.  相似文献   

20.
Previous published data, combined with our results of 13 new radiocarbon ages and extensive geological fieldwork, indicate that during the past 11 ka 24 monogenetic basaltic eruptions occurred in the north sector of Gran Canaria. These eruptions can be grouped into three periods of eruptive activity: 1900–3200 14C a BP; 5700–6000 14C a BP; and an older period represented by only one eruption, El Draguillo, dated at 10 610 ± 190 14C a BP. Archaeological studies have shown that the more recent eruptions affected prehistoric human settlements on the island. Field studies demonstrate that the eruptions typically built strombolian cones (30–250 m in height) and associated relatively long lava flows (100–10 350 m in length); a few eruptions also produced tephra fall deposits. The total erupted volume of these eruptions is about 0.388 km3 (46.1% as tephra fall, 41.8% as cinder cone deposits and 12.1% as lava flows). The relatively low eruption rate (~0.04 km3 ka?1) during the past 11 ka is consistent with Gran Canaria's stage of evolution in the regional volcano‐tectonic setting of the Canary Archipelago. The results of our study were used to construct a volcanic hazards map that clearly delimits two sectors in the NE sector of Gran Canaria, where potential future eruptions would pose a substantial risk for densely populated areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号