首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a new strain of microorganism Shewanella putrefaciens was used for biofiltration of a pyridine laden air stream in a corn‐cob packed biotrickling filter. In the biotrickling filter tested with S. putrefaciens, the maximum removal of pyridine is determined to be 100% at less than the average inlet concentration of 0.653 g m–3 and more than 93% at a higher average inlet concentration of 1.748 g m–3 (phase VIII) with an empty bed residence time (EBRT) of 106 s. However, when the biotrickling filter was operated at a low EBRT of 53 s and almost the same average inlet concentration of 1.752 g m–3 (phase VII), the removal level attained was not greater than 85%. The maximum elimination capacity (EC) of the biotrickling filter was 102.34 g m–3h–1 at an inlet pyridine load of 119.62 g m–3h–1 with an EBRT of 53 s in phase VII. The maximum deviation of the EC from the 100% conversion line varied from 0.257 to 10.166% when going from phase I to VIII. Kinetic analysis showed that the maximum removal rate, rmax, and saturation constant, Ks, values for pyridine were calculated as 0.24 g m–3h–1 and 6.44 g m–3, respectively, with a correlation coefficient, R2, of 0.9939 and a standard deviation of error of 23.94%. The information contained herein indicates that the corn‐cob packed biotrickling filter inoculated by S. putrefaciens should provide excellent performance in the removal of gaseous pyridine.  相似文献   

2.
Summary The global distributions of the annual and seasonal means of the diurnal (S 1) and semidiurnal (S 2) surface pressure oscillations are investigated by spherical harmonic analysis. The main waves are,S 1 1 (with wave number 1) forS 1 andS 2 2 forS 2.S 1 1 is much less predominant among the waves ofS 1 thanS 2 2 among those ofS 2. As in the case of the lunar semidiurnal barometric tideL 2 the pressure maxima occur earlier in the Southern than in the Northern Hemisphere. In the case ofS 2 the standing waveS 2 0 and the waveS 2 3 are also of interest besidesS 2 2. Although the present analysis extends only from 60°N to 60°S, whileS 2 0 is largest at polar latitudes, its results show thatS 2 0 should be smaller at high southerly than at high northerly latitudes, as has been observed. Thus this observed asymmetrical distribution ofS 2 0 may be due to causes outside the polar regions rather than to their geographical differences. The best approximation to the observed distribution ofS 2 0 is obtained by including a mode representing an oscillation independent of longitude and latitude indicating a small semidiurnal variation of the mean global surface presure, which is an unlikely result on physical grounds.The seasonal variation ofS 1 1 expressed in percent of the annual mean is smaller than that ofS 2 2, and both are less than the unexplained seasonal variation ofL 2 2.The main wavesS 1 1 andS 2 2 are expressed not only by associated Legendre functions, but also by Hough functions.National Center for Atmospheric Research, Boulder, Colorado, U.S.A., sponsored by the National Science Foundation.  相似文献   

3.
S. Lallahem  J. Mania 《水文研究》2006,20(7):1585-1595
Chalk crops out from a wide belt around the Paris basin, France, covering an area of about 70 000 km2. In this region, the chalk presents the most important unconfined aquifer because of its extent and the size of its resources ((11–12) × 109 m3 year?1). The assessment of underground outflow depends on the vertical feeding, the infiltration and the hydrometry. This paper analyses the regional structural map, interprets the groundwater reaction under rainfall, explains the water circulation in such media where the reservoir geometry plays an essential role on aquifer response, and determines different aquifer physical parameters. Attempts are made to identify the rapid transfer of groundwater at the level of faults and their important fissures. Based on a quantitative study of the seasonal and interannual piezometry fluctuations, it is noted that the mode and the piezometric chronology events are controlled by major parameters of geological and hydrogeologic contexts, aquifer hydraulic characteristics, the position of upstream and downstream basin limits, groundwater depth and replenishment time. This paper ends with determination of groundwater physical parameters of the diffusivity (T/S, T and S) values by examination of the groundwater replenishments periods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the area. As a result, large quantities of sediment are transported to surrounding valley networks causing significant damage to water quality and aquatic, wetland, and riparian ecosystems. This study establishes the slope/drainage area threshold for gullying along Pikes Peak Highway and a cesium‐137 based sediment budget highlighting rates of gully erosion and subsequent valley deposition for a small headwater basin. The threshold for gullying along the road is Scr = 0 · 21A–0·45 and the road surface reduces the critical slope requirement for gullying compared to natural drainages in the area. Total gully volume for the 20 gullies along the road is estimated at 5974 m3, with an erosion rate of 64 m3 yr–1 to 101 m3 yr–1. Net valley deposition is estimated at 162 m3 yr–1 with 120 m3 yr–1 unaccounted for by gullying. The hillslope–channel interface is decoupled with minimal downstream sediment transport which results in significant local gully‐derived sedimentation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

In this work, the applicability of 12 solar radiation (RS) estimation models and their impacts on daily reference evapotranspiration (ETo) estimates using the Penman‐Monteith FAO-56 (PMF-56) method were tested under cool arid and semi-arid conditions in Iran. The results indicated that the average increase in accuracy of the ETo estimates by the calibrated RS models, quantified by the decrease in RMSE, was 2.8% and 6.4% for semi-arid and arid climates, respectively. Mean daily deviations in the estimated ETo by the calibrated RS equations in semi-arid climates varied from ?0.283?mm/d-1 for the Glover‐McCulloch model to 0.080?mm/d for the El-Sebaii model, with an average of ?0.109?mm/d-1, and in arid climates, they ranged from ?0.522?mm/d-1 for the Samani model to 0.668?mm/d for the El-Sebaii model, with an average of 0.125?mm/d-1.
Editor D. Koutsyiannis; Associate editor Not assigned  相似文献   

6.
Abstract

An exceptional case to the model-independent theory of Knobloch (1995) is presented, by investigating a rotating cylindrical annulus of height H and side wall radii r o and r i, with non-slip, perfectly thermally conducting side walls and thermally insulating stress-free ends. Radial heating permits the possibility of either two- or three-dimensional convective solutions being the preferred mode. An analytical solution is obtained for the two-dimensional case and a numerical solution for the three-dimensional solution, which is also applied to the two-dimensional solution. It is shown that both two- and three-dimensional solutions can be realized depending on the aspect ratio, γ = H/d, where d = r o-r i is the thickness of the annulus, the radii ratio λ = r i/r o and the rotation rate of the model. For γ = O(1) and λ = 0.4, the preferred convective solution is three-dimensional when the Taylor number, T < 102 and two-dimensional for T > 102. For small aspect ratios, γ ? 1, the preferred mode is two-dimensional for all rotation rates.  相似文献   

7.
In this paper, the morphology of step–pool features is analysed using rill measurements and literature data for streams. Close-range photogrammetry was used to carry out ground measurements on rills with step–pool units, shaped on a plot having slope equal to 14, 15, 22, 24 and 26%. Data were used to compare the relationships between H/L, in which H is the step height and L is the step length, and the mean gradient of the step–pool sequence, Sm, for streams or the slope of the step–pool unit, S, for rills. The relationship of H/L against Sm is widely used to test the occurrence of the maximum flow resistance condition in streams, which is associated with the range 1 ≤ (H/L)/Sm ≤ 2. Further analyses were carried out to compare both the formation process and the profile of the pool in rills with those related to streams. Moreover, for a single rill channel, an analysis of flow characteristics expressed in terms of Darcy–Weisbach friction factor and Froude number was developed. The results allowed us to state: (i) the relationships of H/L versus Sm and S are quite similar and the steepness ratio for streams, (H/L)/Sm, and for rills, (H/L)/S, generally ranges from 1 to 2; (ii) the formation process and the profile of the pool in rills are not consistent with those occurring in streams; (iii) in the rills, the longitudinal size of the pool is dominant with respect to the maximum scour depth; (iv) the presence of a sequence of step–pool units within a rill segment noticeably increases flow resistance compared to segments with a flat bed; (v) the Froude number of the flow over the sequence of step–pool units in rills is slightly below the range of 0.8–1 corresponding to the maximum flow resistance in step–pool units.  相似文献   

8.
The seismic energy attenuation in the frequency range of 1–18 Hz was studied in the two tectonically active zones of Irno Valley (Southern Italy) and Granada Basin (South-East Spain). Data were recorded by short period vertical components seismographs for low-magnitude local earthquakes. The method of coda waves, assuming singleS toS scattering approximation, was used to calculate the quality factorQ from the two data set. Results show a quality factor increasing with frequency, following the empirical lawQ=Q o f n .Q o andn are lower for the Irno Valley than for Granada. This result is interpreted in terms of different scattering environments present in the two investigated areas.  相似文献   

9.
The geopotential scale factor R o = GM/W o (the GM geocentric gravitational constant adopted) and/or geoidal potential Wo have been determined on the basis of the first year's (Oct 92 – Dec 93) ERS-1/TOPEX/POSEIDON altimeter data and of the POCM 4B sea surface topography model: R o °=(6 363 672.58°±0.05) m, W o °=(62 636 855.8°±0.05)m 2 s –2 . The 2°–°3 cm uncertainty in the altimeter calibration limits the actual accuracy of the solution. Monitoring dW o /dt has been projected.  相似文献   

10.
Bank strength due to vegetation dominates the geometry of small stream channels, but has virtually no effect on the geometry of larger ones. The dependence of bank strength on channel scale affects the form of downstream hydraulic geometry relations and the meandering‐braiding threshold. It is also associated with a lateral migration threshold discharge, below which channels do not migrate appreciably across their floodplains. A rational regime model is used to explore these scale effects: it parameterizes vegetation‐related bank strength using a dimensionless effective cohesion, Cr*. The scale effects are explored primarily using an alluvial state space defined by the dimensionless formative discharge, Q*, and channel slope, S, which is analogous to the Q–S diagrams originally used to explore meandering‐braiding thresholds. The analyses show that the effect of vegetation on both downstream hydraulic geometry and the meandering‐braiding threshold is strongest for the smallest streams in a watershed, but that the effect disappears for Q* > 106. The analysis of the migration threshold suggests that the critical discharge ranges from about 5 m3/s to 50 m3/s, depending on the characteristic rooting depth for the vegetation. The analysis also suggests that, where fires frequently affect riparian forests, channels may alternate between laterally stable gravel plane‐bed channels and laterally active riffle‐pool channels. These channels likely do not exhibit the classic dynamic equilibrium associated with alluvial streams, but instead exhibit a cyclical morphologic evolution, oscillating between laterally stable and laterally unstable end‐members with a frequency determined by the forest fire recurrence interval. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
We investigate instability of convective flows of simple structure (rolls, standing and travelling waves) in a rotating layer with stress-free horizontal boundaries near the onset of convection. We show that the flows are always unstable to perturbations, which are linear combinations of large-scale modes and short-scale modes, whose wave numbers are close to those of the perturbed flows. Depending on asymptotic relations of small parameters α (the difference between the wave number of perturbed flows and the critical wave number for the onset of convection) and ε (ε2 being the overcriticality and the perturbed flow amplitude being O(ε)), either small-angle or Eckhaus instability is prevailing. In the case of small-angle instability for rolls the largest growth rate scales as ε8/5, in agreement with results of Cox and Matthews (Cox, S.M. and Matthews, P.C., Instability of rotating convection. J. Fluid. Mech., 2000, 403, 153–172) obtained for rolls with k = k c . For waves, the largest growth rate is of the order ε4/3. In the case of Eckhaus instability the growth rate is of the order of α2.  相似文献   

12.
Linear α2Ω-dynamo waves are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified one-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo waves in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85–133) considered the modulation of dynamo waves, linked to a latitudinal-dependent local α-effect and radial gradient of the zonal shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers R α f(θ) and R Ω g(θ). The modulated Parker wave, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent zonal flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo waves with azimuthal wave number m. We find that the critical dynamo number D c?=?R α R Ω is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα?≠?0 there may exist a band of wave numbers 0?m?m ? for which the non-axisymmetric modes have a smaller D c than in the axisymmetric case. Here m ? is regarded as a continuous function of R α with the property m?→0 as R α→0 and the band is only non-empty when m??>1, which happens for sufficiently large R α. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker wave of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω* p ). Since the critical dynamo number D c?=?R α R Ω is O (1) for small R α, the condition m ??>?1 for non-axisymmetric mode preference imposes an upper limit on the size of |dΩ*/dθ|.  相似文献   

13.
Aggtelek National Park, Hungary, is a limestone karst upland characterized by karren, dolines and river caves. For a period of two years, climatic and carbonate dissolution variables were monitored at four depths in a 7·5 m shaft through the soil fill in the floor of a typical large (150 m diameter) doline. Results are compared to other monitoring stations in the shallow soils on side slopes. Runoff and groundwater flow are focused into the base of the doline soil fill, where moisture is maintained at 70–90 per cent field capacity and temperatures permit year-round production of soil CO2. The capacity to dissolve calcite (limestone) ranges from c. 3 g m−2 per year beneath thin soils on the driest slopes to 17–30 g m−2 per year in the top 1–2 m of doline fill and at its base 5–7 m below. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
The optical properties and spatial distribution of chromophoric dissolved organic matter (CDOM) in Meiliang Bay of Lake Taihu were evaluated and compared to the results in literature. Concentrations of dissolved organic carbon (DOC) ranged from 8.75 to 20.19 mg L?1 with an average of (13.10 ± 3.51) mg L?1. CDOM absorption coefficients a(λ) at 280 nm, 355 nm, and 440 nm were in the range 11.28...33.46 m?1 (average (20.95 ± 5.52) m?1), 2.42...7.90 m?1 (average (4.92 ± 1.29) m?1), and 0.65...2.44 m?1 (average (1.46 ± 0.44) m?1), respectively. In general, CDOM absorption coefficient and DOC concentration were found to decrease away from the river inflow to Meiliang Bay towards the lake center. The values of the DOC‐specific absorption coefficients a*(λ), given as absorption coefficient related to mass concentration of organic carbon (C) ranged from 0.28 to 0.47 L mg?1 m?1 at 355 nm. The determination coefficients between CDOM absorption and DOC concentration decreased with the increase of wavelength from 280 to 550 nm. The linear regression relationship between CDOM absorption at 280 nm and DOC concentration was following: a(280 nm) = 1.507 L mg?1 m?1 · DOC + 1.215 m?1. The spectral slope S values were dependent on the wavelength range used in the regression. The estimated S values decreased with increasing wavelength range used. A significant negative linear relationship was found between CDOM absorption coefficients, DOC‐specific absorption coefficients and estimated S values especially in longer wavelength range. The linear regression relationship between DOC‐specific absorption coefficients at 440 nm and estimated S values during the wavelength range from 280 to 500 nm was following: a*(440 nm) = (–0.021 μm · S + 0.424) L mg?1 m?1.  相似文献   

15.
The principle that formative events, punctuated by periods of evolution, recovery or temporary periods of steady‐state conditions, control the development of the step–pool morphology, has been applied to the evolution of the Rio Cordon stream bed. The Rio Cordon is a small catchment (5 km2) within the Dolomites wherein hydraulic parameters of floods and the coarse bedload are recorded. Detailed field surveys of the step–pool structures carried out before and after the September 1994 and October 1998 floods have served to illustrate the control on step–pool changes by these floods. Floods were grouped into two categories. The first includes ‘ordinary’ events which are characterized by peak discharges with a return time of one to five years (1·8–5·15 m3 s?1) and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return time of 30–50 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. Step–pool features were characterized primarily by a steepness parameter c = (H/Ls)/S. The evolution of the steepness parameter was measured in the field from 1992 to 1998. The results indicate that maximum resistance conditions are gradually reached at the end of a series of ordinary flood events. During this period, bed armouring dominate the sediment transport response. However, following an extraordinary flood and unlimited sediment supply conditions, the steepness factor can suddenly decrease as a result of sediment trapped in the pools and a lengthening of step spacing. The analogy of step spacing with antidune wavelength and the main destruction and transformation mechanism of the steps are also discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Knowledge of aquifer parameters is essential for management of groundwater resources. Conventionally, these parameters are estimated through pumping tests carried out on water wells. This paper presents a study that was conducted in three villages (Tumba, Kabazi, and Ndaiga) of Nakasongola District, central Uganda to investigate the hydrogeological characteristics of the basement aquifers. Our objective was to correlate surface resistivity data with aquifer properties in order to reveal the groundwater potential in the district. Existing electrical resistivity and borehole data from 20 villages in Nakasongola District were used to correlate the aquifer apparent resistivity (ρ e) with its hydraulic conductivity (K e), and aquifer transverse resistance (TR) with its transmissivity (T e). K e was found to be related to ρ e by; $ {\text{Log }}(K_{\text{e}} ) = - 0.002\rho_{\text{e}} + 2.692 $ . Similarly, TR was found to be related to T by; $ {\text{TR}} = - 0.07T_{\text{e}} + 2260 $ . Using these expressions, aquifer parameters (T c and K c) were extrapolated from measurements obtained from surface resistivity surveys. Our results show very low resistivities for the presumed water-bearing aquifer zones, possibly because of deteriorating quality of the groundwater and their packing and grain size. Drilling at the preferred VES spots was conducted before the pumping tests to reveal the aquifer characteristics. Aquifer parameters (T o and K o) as obtained from pumping tests gave values (29,424.7 m2/day, 374.3 m/day), (9,801.1 m2/day, 437.0 m/day), (31,852.4 m2/day, 392.9 m/day). The estimated aquifer parameter (T c and K c) when extrapolated from surface geoelectrical data gave (7,142.9 m2/day, 381.9 m/day), (28,200.0 m2/day, 463.4 m/day), (19,428.6 m2/day, 459.2 m/day) for Tumba, Kabazi, and Ndaiga villages, respectively. Interestingly, the similarity between the K c and K o pairs was not significantly different. We observed no significant relationships between the T c and T o pairs. The root mean square errors were estimated to be 18,159 m2/day and 41.4 m/day.  相似文献   

17.
The tropospheric zenith total delay (ZTD) derived from very long baseline interferometry (VLBI) is an important parameter of the atmosphere, reflecting various atmosphere-related processes and variations. In this paper, ZTD time series of the IVS rapid combined tropospheric product (2002–2006) with a 1-h resolution are used for the first time to investigate the diurnal and semidiurnal oscillations. Significant diurnal and semidiurnal variations of ZTD are found at all VLBI stations. The amplitude of the diurnal cycle S1 is 0.6–1.2 mm at most of the VLBI stations, and the amplitude of the semidiurnal cycle S2 is 0.2–1.9 mm, which nearly accord with the surface pressure tides S1/S2 and co-located GPS estimated S1/S2. The results indicate that the S1 and S2 behaviors are mainly dominated by the hydrostatic component, namely pressure tides. In general, the semidiurnal S2 amplitudes are slightly larger than the diurnal S1. While S1 shows no clear dependency on site altitude, S2 has a regular distribution with VLBI site altitude. The results are in accordance with predictions of the classic tidal theory [Chapman, S., Lindzen, R.S., 1970. Atmospheric Tides, Gordon and Breach, New York].  相似文献   

18.
19.
Retrospective data of monitoring under conditions of low seismic activity are used to identify free oscillations of the Earth, including the fundamental mode, the oscillation with a central period of 54 min (0 S 2 m multiplet), split into five lines with azimuthal numbers m = ?2, ?1, 0, 1, 2. It is shown that some lines of this oscillation are also recorded in atmospheric pressure variation spectra and group in ensembles of observations around frequencies predicted by the 0 S 2 m splitting theory. This phenomenon is discovered in data recorded both synchronously and in different time intervals. A causal relationship involved in the oscillation under study is determined on the basis of the examination of the direction of the acoustic energy flux. The energy flux in the region of the 0 S 2 m multiplet is shown to be directed from the Earth toward the atmosphere. This suggests that deep processes in the Earth are capable of exciting its upper shells.  相似文献   

20.
We study two asymptotic regimes of unstable miscible displacements in porous media, in the two limits, where a permeability-modified aspect ratio, RL=L/H(kv/kh)1/2, becomes large or small, respectively. The first limit is known as transverse (or vertical) equilibrium, the second leads to the problem of non-communicating layers (the Dykstra–Parsons problem). In either case, the problem reduces to the solution of a single integro-differential equation. Although at opposite limits of the parameter RL, the two regimes coincide in the case of equal viscosities, M=1. By comparison with high-resolution simulation we investigate the validity of these two approximations. The evolution of transverse averages, particularly under viscous fingering conditions, depends on RL. We investigate the development of a model to describe viscous fingering in weakly heterogeneous porous media under transverse equilibrium conditions, and compare with the various existing empirical models (such as the Koval, Todd–Longstaff and Fayers models).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号